151. Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort
- Author
-
Chahine, Teresa, Baccarelli, Andrea, Litonjua, Augusto Ampil, Wright, Robert O., Suh MacIntosh, Helen H., Gold, Diane R., Sparrow, David, Vokonas, Pantel S, and Schwartz, Joel David
- Subjects
air particles ,air pollution ,cardiovascular health ,genetic variation ,GST ,heart rate variability ,HMOX-1 ,PM[2.5] - Abstract
Background and Objectives: We have previously shown that reduced defenses against oxidative stress due to glutathione S-transferase M1 (GSTM1) deletion modify the effects of PM[2.5] (fine-particulate air pollution of < 2.5 μm in aerodynamic diameter) on heart rate variability (HRV) in a cross-sectional analysis of the Normative Aging Study, an elderly cohort. We have extended this to include a longitudinal analysis with more subjects and examination of the GT short tandem repeat polymorphism in the heme oxygenase-1 (HMOX-1) promoter. Methods: HRV measurements were taken on 539 subjects. Linear mixed effects models were fit for the logarithm of HRV metrics—including standard deviation of normal-to-normal intervals (SDNN), high frequency (HF), and low frequency (LF)—and PM2.5 concentrations in the 48 hr preceding HRV measurement, controlling for confounders and a random subject effect. Results: PM2.5 was significantly associated with SDNN (p = 0.04) and HF (p = 0.03) in all subjects. There was no association in subjects with GSTM1, whereas there was a significant association with SDNN, HF, and LF in subjects with the deletion. Similarly, there was no association with any HRV measure in subjects with the short repeat variant of HMOX-1, and significant associations in subjects with any long repeat. We found a significant three-way interaction of PM[2.5] with GSTM1 and HMOX-1 determining SDNN (p = 0.008), HF (p = 0.01) and LF (p = 0.04). In subjects with the GSTM1 deletion and the HMOX-1 long repeat, SDNN decreased by 13% [95% confidence interval (CI), −21% to −4%], HF decreased by 28% (95% CI, −43% to −9%), and LF decreased by 20% (95% CI, −35% to −3%) per 10 μg/m3 increase in PM. Conclusions: Oxidative stress is an important pathway for the autonomic effects of particles.
- Published
- 2007
- Full Text
- View/download PDF