151. Emergence of coherence and the dynamics of quantum phase transitions
- Author
-
Mathis Friesdorf, Michael Schreiber, Arnau Riera, Simon Braun, Sean Hodgman, Immanuel Bloch, Jens Eisert, Jens Philipp Ronzheimer, Ulrich Schneider, Marco del Rey, Ministerio de Economía y Competitividad (España), Comunidad de Madrid, German Research Foundation, European Research Council, and Defense Advanced Research Projects Agency (US)
- Subjects
Quantum phase transition ,Phase transition ,optical lattice ,Nonequilibrium dynamics ,FOS: Physical sciences ,Quantum simulator ,Ultracold atoms ,Condensed Matter - Strongly Correlated Electrons ,nonequilibrium dynamics ,Ultracold atom ,Quantum mechanics ,Statistical physics ,ultracold atoms ,quantum simulation ,Condensed Matter - Statistical Mechanics ,Physics ,Condensed Matter::Quantum Gases ,Optical lattice ,Quantum Physics ,Multidisciplinary ,Statistical Mechanics (cond-mat.stat-mech) ,Strongly Correlated Electrons (cond-mat.str-el) ,Mott insulator ,Coherence length ,Quantum Gases (cond-mat.quant-gas) ,Physical Sciences ,Quasiparticle ,Quantum simulation ,Quantum Physics (quant-ph) ,Condensed Matter - Quantum Gases - Abstract
5 págs.; 4 figs.; complementary material, © 2015, National Academy of Sciences. All rights reserved. The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose-Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble-Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model., We acknowledge financial support by Deutsche Forschungsgemeinschaft Grant FOR801 (Deutsch-Israelisches Kooperationsprojekt Quantum Phases of Ultracold Atoms in Optical Lattices), the US Defense Advanced Research Projects Agency (Optical Lattice Emulator Program), Nanosystems Initiative Munich, Spanish Ministerio de Economía y Competitividad Project FIS2011-29287, the Spanish Junta para la Ampliación de Estudios Predoctoral Program, CAM Research Consortium QUITEMAD S2009-ESP-1594, the European Union (Simulations and Interfaces with Quantum Systems), the European Research Council (Taming nonequilibrium quantum systems), Studienstiftung des Deutschen Volkes.
- Published
- 2014