151. Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses.
- Author
-
Zonneveld MI, van Herwijnen MJC, Fernandez-Gutierrez MM, Giovanazzi A, de Groot AM, Kleinjan M, van Capel TMM, Sijts AJAM, Taams LS, Garssen J, de Jong EC, Kleerebezem M, Nolte-'t Hoen ENM, Redegeld FA, and Wauben MHM
- Subjects
- Adult, Cell Line, Extracellular Vesicles immunology, Female, Humans, Mouth Mucosa immunology, T-Lymphocytes immunology, Toll-Like Receptor 3 metabolism, Toll-Like Receptor 9 metabolism, p38 Mitogen-Activated Protein Kinases metabolism, Extracellular Vesicles metabolism, MAP Kinase Signaling System, Milk, Human cytology, Mouth Mucosa physiology
- Abstract
Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk. Recently, we discovered that human milk EVs contain a unique proteome compared to other milk components. Here, we show that physiological concentrations of milk EVs support epithelial barrier function by increasing cell migration via the p38 MAPK pathway. Additionally, milk EVs inhibit agonist-induced activation of endosomal Toll like receptors TLR3 and TLR9. Furthermore, milk EVs directly inhibit activation of CD4+ T cells by temporarily suppressing T cell activation without inducing tolerance. We show that milk EV proteins target key hotspots of signalling networks that can modulate cellular processes in various cell types of the GI tract., (© 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.)
- Published
- 2021
- Full Text
- View/download PDF