151. Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells.
- Author
-
Quinlan RA, Cohlberg JA, Schiller DL, Hatzfeld M, and Franke WW
- Subjects
- Animals, Cell Line, Chromatography, High Pressure Liquid, Cross-Linking Reagents, Electrophoresis, Polyacrylamide Gel, Isoelectric Focusing, Macromolecular Substances, Microscopy, Electron, Molecular Weight, Rats, Rats, Inbred Strains, Ultracentrifugation, Cytoskeleton analysis, Keratins isolation & purification, Liver analysis, Liver Neoplasms, Experimental analysis
- Abstract
Cytoskeletal residues obtained after extraction of rat liver and cultured rat hepatoma cells (line MH1C1) were used to isolate cytokeratin subunit complexes by solubilization in low salt buffer containing 4 M-urea. Alternatively, the complexes were prepared by solubilization of total cytoskeletal proteins in 9.5 M-urea or 6 M-guanidinium hydrochloride (Gu . HCl), followed by separation using reversed phase high pressure liquid chromatography and dialysis first against either 9.5 M-urea or 6 M-Gu . HCl and then against buffers containing either 4 M-urea or 2 M-Gu . HCl, respectively. The complexes contained only two cytokeratin polypeptides in a 1 : 1 ratio as demonstrated by electrophoresis and isoelectric focusing, i.e. components A (Mr 55,000; isoelectric point in 9.5 M-urea, pH 6.4) and D (Mr 49,000; isoelectric point, pH 5.38) which were separated from each other at urea concentrations higher than 7 M. The complex had a sedimentation coefficient S25,w of 4.96 S in 2 M-Gu . HCl. Sedimentation equilibrium analysis gave an average Mr value of 207,000 which was interpreted as a tetramer containing two chains each of A and D. This complex was also directly demonstrated by gel electrophoresis under non-dissociating conditions. Using dimethyl suberimidate to cross-link the complex in solution of 4 M-urea or 2 M-Gu . HCl, we identified covalently linked heterodimers of A and D, and a tetrameric unit containing equal amounts of A and D which was the largest cross-link product obtained. This complex was similar to the tetrameric complex of rat and human vimentin formed under the same conditions. The constituents of the cross-linked products were identified by two-dimensional ("diagonal") gel electrophoresis, involving the cleavage of the bis(amidine) cross-links after the initial separation in the first dimension. Identical cross-link products were recognized when cytokeratin filaments were used. By electron microscopy the complexes appeared as threads of 2 to 3 nm diameter with a mean length of approximately 48 nm. On dialysis to low salt buffer, the complexes formed 2 to 3 nm protofilaments, intertwisted 3 to 4 nm protofilaments and typical 7 to 11 nm intermediate-sized filaments. Complexes formed from equivalent cytokeratins of other species such as man and cow, as well as heterologous recombinations such as human component A mixed with bovine component D and vice versa, showed the same characteristics.(ABSTRACT TRUNCATED AT 400 WORDS)
- Published
- 1984
- Full Text
- View/download PDF