151. Temporal dynamics of 137Cs distribution in soil and soil-to-crop transfer factor under different tillage systems after the Fukushima Daiichi Nuclear Power Plant accident in Japan
- Author
-
Yingting Gong, Masakazu Komatsuzaki, and Peiran Li
- Subjects
Agroecosystem ,Radionuclide ,Environmental Engineering ,business.product_category ,010504 meteorology & atmospheric sciences ,Transfer factor ,fungi ,food and beverages ,010501 environmental sciences ,01 natural sciences ,Pollution ,Plough ,Tillage ,Crop ,Nutrient ,Agronomy ,Environmental Chemistry ,Environmental science ,Cover crop ,business ,Waste Management and Disposal ,0105 earth and related environmental sciences - Abstract
The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan in 2011 released a large amount of radionuclides, primarily radiocesium-137 (137Cs; half-life: 30 years), resulting in long-term contamination of soil and consequently crops. Tillage is a common agricultural management practice that alters the vertical distribution of nutrients in the soil. However, the effect of tillage on 137Cs contamination in soil and crops over time remains unclear. In this study, we investigated the temporal changes in the vertical distribution of 137Cs in the soil, concentration of 137Cs in soybean and cover crops, and the transfer factor (TF) of 137Cs from the soil to crops under three tillage systems (rotary cultivation [RC], moldboard plow [MP], and no tillage [NT]; main factors) using three cover crops (hairy vetch, winter rye, and fallow weeds; side factors). The amount of 137Cs in the soil decreased exponentially with soil depth under the NT and RC treatments. By contrast, 137Cs showed uniform distribution at each soil depth tested under the MP treatment since 2012. The exchangeable 137Cs demonstrated a similar tendency as 137Cs. The 137Cs concentration in soybean (including grain and residue) and cover crops decreased exponentially with time. Consistently higher 137Cs concentration was observed in soybean grains under the NT treatment, suggesting that tillage continuously reduced the concentration of 137Cs in soybean over 7 years since the FDNPP accident. The TF of 137Cs from soil to soybean and cover crops decreased continuously over time; however, 137Cs concentration of soybean grain showed a positive linear correlation with its annual variation rate. Additionally, TF showed a positive logarithmic correlation with 137Cs relaxation depth in the soil. These results enhance our understanding of the long-term behavior and radioecology of 137Cs in agroecosystems in Japan since the radionuclide accident.
- Published
- 2019