151. Effective mRNA Protection by Poly(l-ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency.
- Author
-
Dirisala A, Uchida S, Li J, Van Guyse JFR, Hayashi K, Vummaleti SVC, Kaur S, Mochida Y, Fukushima S, and Kataoka K
- Subjects
- Ornithine analysis, Ornithine metabolism, RNA, Messenger, Transfection, Endosomes chemistry, Endosomes metabolism, Polymers chemistry
- Abstract
For efficient delivery of messenger (m)RNA, delivery carriers need two major functions: protecting mRNA from nucleases and translocating mRNA from endolysosomes to the cytoplasm. Herein, these two complementary functionalities are integrated into a single polyplex by fine-tuning the catiomer chemical structure and incorporating the endosomal escape modality. The effect of the methylene spacer length on the catiomer side chain is evaluated by comparing poly(l-lysine) (PLL) with a tetramethylene spacer and poly(L-ornithine) (PLO) with a trimethylene spacer. Noteworthily, the nuclease stability of the mRNA/catiomer polyplexes is largely affected by the difference in one methylene group, with PLO/mRNA polyplex showing enhanced stability compared to PLL/mRNA polyplex. To introduce the endosomal escape function, the PLO/mRNA polyplex is wrapped with a charge-conversion polymer (CCP), which is negatively charged at extracellular pH but turns positive at endosomal acidic pH to disrupt the endosomal membrane. Compared to the parent PLO/mRNA polyplex, CCP facilitated the endosomal escape of the polyplex in cultured cells to improve the protein expression efficiency from mRNA by approximately 80-fold. Collectively, this system synergizes the protective effect of PLO against nucleases and the endosomal escape capability of CCP in mRNA delivery., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF