151. Distinguishing features of long COVID identified through immune profiling.
- Author
-
Klein J, Wood J, Jaycox JR, Dhodapkar RM, Lu P, Gehlhausen JR, Tabachnikova A, Greene K, Tabacof L, Malik AA, Silva Monteiro V, Silva J, Kamath K, Zhang M, Dhal A, Ott IM, Valle G, Peña-Hernández M, Mao T, Bhattacharjee B, Takahashi T, Lucas C, Song E, McCarthy D, Breyman E, Tosto-Mancuso J, Dai Y, Perotti E, Akduman K, Tzeng TJ, Xu L, Geraghty AC, Monje M, Yildirim I, Shon J, Medzhitov R, Lutchmansingh D, Possick JD, Kaminski N, Omer SB, Krumholz HM, Guan L, Dela Cruz CS, van Dijk D, Ring AM, Putrino D, and Iwasaki A
- Subjects
- Humans, Biomarkers blood, Cross-Sectional Studies, Immunophenotyping, Machine Learning, Antibodies, Viral blood, Antibodies, Viral immunology, Herpesvirus 4, Human immunology, Hydrocortisone blood, Lymphocytes immunology, Myeloid Cells immunology, Post-Acute COVID-19 Syndrome diagnosis, Post-Acute COVID-19 Syndrome immunology, Post-Acute COVID-19 Syndrome physiopathology, Post-Acute COVID-19 Syndrome virology, SARS-CoV-2 immunology
- Abstract
Post-acute infection syndromes may develop after acute viral disease
1 . Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4 . However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF