14,431,534 results on '"Li, A."'
Search Results
152. Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models
- Author
-
Li, Boheng, Wei, Yanhao, Fu, Yankai, Wang, Zhenting, Li, Yiming, Zhang, Jie, Wang, Run, and Zhang, Tianwei
- Subjects
Computer Science - Computers and Society ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Text-to-image diffusion models are pushing the boundaries of what generative AI can achieve in our lives. Beyond their ability to generate general images, new personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles. Such a lightweight solution, enabling AI practitioners and developers to easily build their own personalized models, also poses a new concern regarding whether the personalized models are trained from unauthorized data. A promising solution is to proactively enable data traceability in generative models, where data owners embed external coatings (e.g., image watermarks or backdoor triggers) onto the datasets before releasing. Later the models trained over such datasets will also learn the coatings and unconsciously reproduce them in the generated mimicries, which can be extracted and used as the data usage evidence. However, we identify the existing coatings cannot be effectively learned in personalization tasks, making the corresponding verification less reliable. In this paper, we introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models. Our approach optimizes the coating in a delicate way to be recognized by the model as a feature relevant to the personalization task, thus significantly improving its learnability. We also utilize a human perceptual-aware constraint, a hypersphere classification technique, and a hypothesis-testing-guided verification method to enhance the stealthiness and detection accuracy of the coating. The effectiveness of SIREN is verified through extensive experiments on a diverse set of benchmark datasets, models, and learning algorithms. SIREN is also effective in various real-world scenarios and evaluated against potential countermeasures. Our code is publicly available., Comment: To appear in the IEEE Symposium on Security & Privacy, May 2025
- Published
- 2024
153. CRUcialG: Reconstruct Integrated Attack Scenario Graphs by Cyber Threat Intelligence Reports
- Author
-
Cheng, Wenrui, Zhu, Tiantian, Chen, Tieming, Yuan, Qixuan, Ying, Jie, Li, Hongmei, Xiong, Chunlin, Li, Mingda, Lv, Mingqi, and Chen, Yan
- Subjects
Computer Science - Cryptography and Security - Abstract
Cyber Threat Intelligence (CTI) reports are factual records compiled by security analysts through their observations of threat events or their own practical experience with attacks. In order to utilize CTI reports for attack detection, existing methods have attempted to map the content of reports onto system-level attack provenance graphs to clearly depict attack procedures. However, existing studies on constructing graphs from CTI reports suffer from problems such as weak natural language processing (NLP) capabilities, discrete and fragmented graphs, and insufficient attack semantic representation. Therefore, we propose a system called CRUcialG for the automated reconstruction of attack scenario graphs (ASGs) by CTI reports. First, we use NLP models to extract systematic attack knowledge from CTI reports to form preliminary ASGs. Then, we propose a four-phase attack rationality verification framework from the tactical phase with attack procedure to evaluate the reasonability of ASGs. Finally, we implement the relation repair and phase supplement of ASGs by adopting a serialized graph generation model. We collect a total of 10,607 CTI reports and generate 5,761 complete ASGs. Experimental results on CTI reports from 30 security vendors and DARPA show that the similarity of ASG reconstruction by CRUcialG can reach 84.54%. Compared with SOTA (EXTRACTOR and AttackG), the recall of CRUcialG (extraction of real attack events) can reach 88.13% and 94.46% respectively, which is 40% higher than SOTA on average. The F1-score of attack phase verification is able to reach 90.04%.
- Published
- 2024
154. Removable singularity of (-1)-homogeneous solutions of stationary Navier-Stokes equations
- Author
-
Li, Li, Li, YanYan, and Yan, Xukai
- Subjects
Mathematics - Analysis of PDEs - Abstract
We study the removable singularity problem for $(-1)$-homogeneous solutions of the three-dimensional incompressible stationary Navier-Stokes equations with singular rays. We prove that any local $(-1)$-homogeneous solution $u$ near a potential singular ray from the origin, which passes through a point $P$ on the unit sphere $\mathbb{S}^2$, can be smoothly extended across $P$ on $\mathbb{S}^2$, provided that $u=o(\ln \text{dist} (x, P))$ on $\mathbb{S}^2$. The result is optimal in the sense that for any $\alpha>0$, there exists a local $(-1)$-homogeneous solution near $P$ on $\mathbb{S}^2$, such that $\lim_{x\in \mathbb{S}^2, x\to P}|u(x)|/\ln |x'|=-\alpha$. Furthermore, we discuss the behavior of isolated singularities of $(-1)$-homogeneous solutions and provide examples from the literature that exhibit varying behaviors. We also present an existence result of solutions with any finite number of singular points located anywhere on $\mathbb{S}^2$.
- Published
- 2024
155. Optimizing Instruction Synthesis: Effective Exploration of Evolutionary Space with Tree Search
- Author
-
Li, Chenglin, Chen, Qianglong, Li, Zhi, Tao, Feng, Li, Yicheng, Chen, Hao, Yu, Fei, and Zhang, Yin
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
Instruction tuning is a crucial technique for aligning language models with humans' actual goals in the real world. Extensive research has highlighted the quality of instruction data is essential for the success of this alignment. However, creating high-quality data manually is labor-intensive and time-consuming, which leads researchers to explore using LLMs to synthesize data. Recent studies have focused on using a stronger LLM to iteratively enhance existing instruction data, showing promising results. Nevertheless, previous work often lacks control over the evolution direction, resulting in high uncertainty in the data synthesis process and low-quality instructions. In this paper, we introduce a general and scalable framework, IDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search), a scalable framework for efficiently synthesizing instructions. With tree search and evaluation models, it can efficiently guide each instruction to evolve into a high-quality form, aiding in instruction fine-tuning. Experimental results show that IDEA-MCTS significantly enhances the seed instruction data, raising the average evaluation scores of quality, diversity, and complexity from 2.19 to 3.81. Furthermore, in open-domain benchmarks, experimental results show that IDEA-MCTS improves the accuracy of real-world instruction-following skills in LLMs by an average of 5\% in low-resource settings.
- Published
- 2024
156. Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks
- Author
-
Li, Binghui, Pan, Zhixuan, Lyu, Kaifeng, and Li, Jian
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
In this work, we investigate a particular implicit bias in the gradient descent training process, which we term "Feature Averaging", and argue that it is one of the principal factors contributing to non-robustness of deep neural networks. Despite the existence of multiple discriminative features capable of classifying data, neural networks trained by gradient descent exhibit a tendency to learn the average (or certain combination) of these features, rather than distinguishing and leveraging each feature individually. In particular, we provide a detailed theoretical analysis of the training dynamics of gradient descent in a two-layer ReLU network for a binary classification task, where the data distribution consists of multiple clusters with orthogonal cluster center vectors. We rigorously prove that gradient descent converges to the regime of feature averaging, wherein the weights associated with each hidden-layer neuron represent an average of the cluster centers (each center corresponding to a distinct feature). It leads the network classifier to be non-robust due to an attack that aligns with the negative direction of the averaged features. Furthermore, we prove that, with the provision of more granular supervised information, a two-layer multi-class neural network is capable of learning individual features, from which one can derive a binary classifier with the optimal robustness under our setting. Besides, we also conduct extensive experiments using synthetic datasets, MNIST and CIFAR-10 to substantiate the phenomenon of feature averaging and its role in adversarial robustness of neural networks. We hope the theoretical and empirical insights can provide a deeper understanding of the impact of the gradient descent training on feature learning process, which in turn influences the robustness of the network, and how more detailed supervision may enhance model robustness., Comment: 78 pages, 10 figures
- Published
- 2024
157. DiRW: Path-Aware Digraph Learning for Heterophily
- Author
-
Su, Daohan, Li, Xunkai, Li, Zhenjun, Liao, Yinping, Li, Rong-Hua, and Wang, Guoren
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Recently, graph neural network (GNN) has emerged as a powerful representation learning tool for graph-structured data. However, most approaches are tailored for undirected graphs, neglecting the abundant information embedded in the edges of directed graphs (digraphs). In fact, digraphs are widely applied in the real world (e.g., social networks and recommendations) and are also confirmed to offer a new perspective for addressing topological heterophily challenges (i.e., connected nodes have complex patterns of feature distribution or labels). Despite recent significant advancements in DiGNNs, existing spatial- and spectral-based methods have inherent limitations due to the complex learning mechanisms and reliance on high-quality topology, leading to low efficiency and unstable performance. To address these issues, we propose Directed Random Walk (DiRW), which can be viewed as a plug-and-play strategy or an innovative neural architecture that provides a guidance or new learning paradigm for most spatial-based methods or digraphs. Specifically, DiRW incorporates a direction-aware path sampler optimized from the perspectives of walk probability, length, and number in a weight-free manner by considering node profiles and topological structure. Building upon this, DiRW utilizes a node-wise learnable path aggregator for generalized messages obtained by our proposed adaptive walkers to represent the current node. Extensive experiments on 9 datasets demonstrate that DiRW: (1) enhances most spatial-based methods as a plug-and-play strategy; (2) achieves SOTA performance as a new digraph learning paradigm., Comment: Under Review
- Published
- 2024
158. Direct High-resolution Observation of Feedback and Chemical Enrichment in the Circumgalactic Medium at Redshift 2.8
- Author
-
Peng, Bo, Battaia, Fabrizio Arrigoni, Vishwas, Amit, Li, Mingyu, Iani, Eduardo, Sun, Fengwu, Li, Qiong, Ferkinhoff, Carl, Stacey, Gordon, and Cai, Zheng
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Although the circumgalactic medium (CGM) plays a vital role in galaxy evolution, studying the emission from CGM is challenging due to its low surface brightness and the complexities involved in interpreting resonant lines like Ly$\alpha$. The near-infrared coverage, unprecedented sensitivity, and high spatial resolution of the JWST enable us to study the optical strong lines associated with the extended Ly$\alpha$ "nebulae" at redshift 2-3. These lines serve as diagnostic tools to infer the physical conditions in the massive CGM gas reservoir of these systems. In deep medium-band images taken by the JWST, we serendipitously discover the [O III] emission from the CGM surrounding a massive interacting galaxy system at redshift z ~ 2.8, known to be embedded in a bright extended (100 kpc) Ly$\alpha$ "nebula". This is the first time that the [O III] lines are detected from a Ly$\alpha$ "nebula", and the JWST images reveal that the CGM gas actually resides in narrow (~ 2.5 kpc) filamentary structures with strong [O III] emission, tracing the same extent as the Ly$\alpha$ emission. Analysis of the [O III] suggests that the emitting CGM is fully ionized and is energetically dominated by mechanical heating. We also find that the inferred density and pressure are higher than those commonly predicted by simulations of the CGM. We conclude that the observed CGM emission originates from the gas expelled by the episodic feedback processes, cooling down and enriching the CGM, while travelling to a distance of at least 60 kpc. These observations demonstrate how fierce feedback processes shape gas distribution and properties in the CGM around massive halos. While the deep high-resolution imaging opens up a new discovery space for investigating the CGM, it also challenges numerical simulations to explain and reproduce the exquisitely complex structures revealed by the observations., Comment: 13 pages, 6 figures, 1 table, submitted to A&A Letter
- Published
- 2024
159. Saliency Guided Optimization of Diffusion Latents
- Author
-
Wang, Xiwen, Zhou, Jizhe, Zhu, Xuekang, Li, Cheng, and Li, Mao
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
With the rapid advances in diffusion models, generating decent images from text prompts is no longer challenging. The key to text-to-image generation is how to optimize the results of a text-to-image generation model so that they can be better aligned with human intentions or prompts. Existing optimization methods commonly treat the entire image uniformly and conduct global optimization. These methods overlook the fact that when viewing an image, the human visual system naturally prioritizes attention toward salient areas, often neglecting less or non-salient regions. That is, humans are likely to neglect optimizations in non-salient areas. Consequently, although model retaining is conducted under the guidance of additional large and multimodality models, existing methods, which perform uniform optimizations, yield sub-optimal results. To address this alignment challenge effectively and efficiently, we propose Saliency Guided Optimization Of Diffusion Latents (SGOOL). We first employ a saliency detector to mimic the human visual attention system and mark out the salient regions. To avoid retraining an additional model, our method directly optimizes the diffusion latents. Besides, SGOOL utilizes an invertible diffusion process and endows it with the merits of constant memory implementation. Hence, our method becomes a parameter-efficient and plug-and-play fine-tuning method. Extensive experiments have been done with several metrics and human evaluation. Experimental results demonstrate the superiority of SGOOL in image quality and prompt alignment.
- Published
- 2024
160. Cooperation in Public Goods Games: Leveraging Other-Regarding Reinforcement Learning on Hypergraphs
- Author
-
Li, Bo-Ying, Zhang, Zhen-Na, Zheng, Guo-Zhong, Cai, Chao-Ran, Zhang, Ji-Qiang, and Li, Chen
- Subjects
Physics - Physics and Society ,Nonlinear Sciences - Adaptation and Self-Organizing Systems - Abstract
Cooperation as a self-organized collective behavior plays a significant role in the evolution of ecosystems and human society. Reinforcement learning (RL) offers a new perspective, distinct from imitation learning in evolutionary games, for exploring the mechanisms underlying its emergence. However, most existing studies with the public good game (PGG) employ a self-regarding setup or are on pairwise interaction networks. Players in the real world, however, optimize their policies based not only on their histories but also on the histories of their co-players, and the game is played in a group manner. In the work, we investigate the evolution of cooperation in the PGG under the other-regarding reinforcement learning evolutionary game (OR-RLEG) on hypergraph by combining the Q-learning algorithm and evolutionary game framework, where other players' action history is incorporated and the game is played on hypergraphs. Our results show that as the synergy factor increases, the parameter interval is divided into three distinct regions, the absence of cooperation (AC), medium cooperation (MC), and high cooperation (HC), accompanied by two abrupt transitions in the cooperation level near two transition points, respectively. Interestingly, we identify regular and anti-coordinated chessboard structures in the spatial pattern that positively contribute to the first cooperation transition but adversely affect the second. Furthermore, we provide a theoretical treatment for the first transition with an approximated first transition point and reveal that players with a long-sighted perspective and low exploration rate are more likely to reciprocate kindness with each other, thus facilitating the emergence of cooperation. Our findings contribute to understanding the evolution of human cooperation, where other-regarding information and group interactions are commonplace.
- Published
- 2024
161. The Stellar Abundances and Galactic Evolution Survey (SAGES) III -- The g/r/i-band Data Release
- Author
-
Li, Chun, Fan, Zhou, Zhao, Gang, Wang, Wei, Zheng, Jie, Tan, Kefeng, Zhao, Jingkun, Huang, Yang, Yuan, Haibo, Xiao, Kai, Chen, Yuqin, Li, Haining, Liu, Yujuan, Song, Nan, Esamdin, Ali, Niu, Hu-Biao, Liu, Jin-Zhong, and Feng, Guo-Jie
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The Stellar Abundances and Galactic Evolution Survey (SAGES) is a multi-band survey that covers the northern sky area of ~12000 deg2. Nanshan One-meter Wide-field Telescope (NOWT) of Xinjiang Astronomical Observatory (XAO) carried out observations on g/r/i bands. We present here the survey strategy, data processing, catalog construction, and database schema. The observations of NOWT started in 2016 August and was completed in 2018 January, total 17827 frames were obtained and ~4600 deg2 sky areas were covered. In this paper, we released the catalog of the data in the g/r/i bands observed with NOWT. In total, there are 109,197,578 items of the source records. The catalog is the supplement for the SDSS for the bright end, and the combination of our catalog and these catalogs could be helpful for source selections for other surveys and the Milky Way sciences, e.g., white dwarf candidates and stellar flares., Comment: 12 pages, 8 figures, accepted for publication in RAA
- Published
- 2024
162. ATLAS: Adapter-Based Multi-Modal Continual Learning with a Two-Stage Learning Strategy
- Author
-
Li, Hong, Tan, Zhiquan, Li, Xingyu, and Huang, Weiran
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
While vision-and-language models significantly advance in many fields, the challenge of continual learning is unsolved. Parameter-efficient modules like adapters and prompts present a promising way to alleviate catastrophic forgetting. However, existing works usually learn individual adapters for each task, which may result in redundant knowledge among adapters. Moreover, they continue to use the original pre-trained model to initialize the downstream model, leading to negligible changes in the model's generalization compared to the original model. In addition, there is still a lack of research investigating the consequences of integrating a multi-modal model into the updating procedure for both uni-modal and multi-modal tasks and the subsequent impacts it has on downstream tasks. In this paper, we propose an adapter-based two-stage learning paradigm, a multi-modal continual learning scheme that consists of experience-based learning and novel knowledge expansion, which helps the model fully use experience knowledge and compensate for novel knowledge. Extensive experiments demonstrate that our method is proficient for continual learning. It expands the distribution of representation upstream while also minimizing the negative impact of forgetting previous tasks. Additionally, it enhances the generalization capability for downstream tasks. Furthermore, we incorporate both multi-modal and uni-modal tasks into upstream continual learning. We observe that learning from upstream tasks can help with downstream tasks. Our code will be available at: https://github.com/lihong2303/ATLAS.
- Published
- 2024
163. Gaseous Scissor-mediated Electrochemical Exfoliation of Halogenated MXenes and its Boosting in Wear-Resisting Tribovoltaic Devices
- Author
-
Fan, Qi, Chen, Minghua, Li, Longyi, Li, Minghui, Xiao, Chuanxiao, Zhao, Tianci, Pan, Long, Liang, Ningning, Huang, Qing, Zhu, Laipan, Naguib, Michael, and Liang, Kun
- Subjects
Physics - Applied Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Materials Science - Abstract
Two-dimensional transition metal carbides (MXenes), especially their few-layered nanosheets, have triggered burgeoning research attentions owing to their superiorities including extraordinary conductivity, accessible active surface, and adjustable processability. Molten salts etching route further achieves their controllable surface chemistry. However, the method encounters challenges in achieving few-layer structures due to more complex delamination behaviors. Herein, we present an efficient strategy to fabricate Cl- or Br-terminated MXene nanoflakes with few-layers, achieved by electrochemical intercalation of Li ions and concomitant solvent molecules in the electrolyte solution, with gaseous scissors (propylene molecules) to break up interlayer forces. By controlling cut-off voltages, the optimal protocol results in nanosheets with an ultrahigh yield (~93%) and preserved surface chemistry. The resultant MXenes dispersions were employed as lubricants to enhance tribovoltaic nanogenerators, where Ti3C2Br2 displayed superior electrical output. These findings facilitate the understanding of MXenes' intrinsic physical properties and enable the nanoengineering of advanced electronic devices.
- Published
- 2024
164. Shear viscoelasticity in anisotropic holographic axion model
- Author
-
Li, Lei, Li, Wei-Jia, and Kuang, Xiao-Mei
- Subjects
High Energy Physics - Theory ,General Relativity and Quantum Cosmology - Abstract
In this work, we investigate the shear viscoelasticity in a simple holographic axion model with broken translational symmetry and rotational symmetry in space via the perturbation computation. We find that, in the case of spontaneous symmetry breaking, the broken translations and anisotropy both enhance the shear elasticity of the system. While in all cases, they introduce a double suppression on the shear viscosity, which is in contrast to the result from the study of the p-wave holographic superfluid where the shear viscosity is enhanced when the rotational symmetry is broken spontaneously.
- Published
- 2024
165. A possible formation scenario of the Gaia BH1: inner binary merger in triple systems
- Author
-
Li, Zhuowen, Zhu, Chunhua, Lu, Xizhen, Lü, Guoliang, Li, Lin, Liu, Helei, Guo, Sufen, and Yu, Jinlong
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Based on astrometric measurements and spectral analysis from $Gaia$ DR3, two quiescent black hole (BH) binaries, $Gaia$ BH1 and BH2, have been identified. Their origins remain controversial, particularly for $Gaia$ BH1. By considering a rapidly rotating ($\omega/\omega_{\rm crit} = 0.8$) and strongly magnetized ($B_{\rm 0} = 5000$ G) merger product, we find that, at typical Galactic metallicity, the merger product can undergo efficient chemically homogeneous evolution (CHE). This results in the merger product having a significantly smaller radius during its evolution compared to that of a normally evolving massive star. Under the condition that the initial triple stability is satisfied, we use the Multiple Stellar Evolution (MSE) code and the MESA code to identify an initial hierarchical triple that can evolve into $Gaia$ BH1. It initially consists of three stars with masses of 9.03 $M_{\odot}$, 3.12 $M_{\odot}$, and 1 $M_{\odot}$, with inner and outer orbital periods of 2.21 days and 121.92 days, and inner and outer eccentricities of 0.41 and 0.45, respectively. This triple initially experiences triple evolution dynamics instability (TEDI) followed by Roche lobe overflow (RLOF). During RLOF, the inner orbit shrinks, and tidal effects gradually suppress the TEDI. Eventually, the inner binary undergoes a merger through contact (or collision). Finally, using models of rapidly rotating and strongly magnetic stars, along with standard core-collapse supernova (SN) or failed supernova (FSN) models, we find that a PMB consisting of an 12.11 $M_{\odot}$ merger product and a 1 $M_{\odot}$ companion star (originally an outer tertiary) can avoid RLOF. After a SN or FSN with a low ejected mass of $\sim$0.22 $M_{\odot}$ and a low kick velocity ($46^{+25}_{-33}$ ${\rm km/s}$ or $9^{+16}_{-8}$ ${\rm km/s}$), the PMB can form $Gaia$ BH1 in the Galactic disk., Comment: 11 pages, 3 figures, Accepted to APJL
- Published
- 2024
166. S$^4$ST: A Strong, Self-transferable, faSt, and Simple Scale Transformation for Transferable Targeted Attack
- Author
-
Liu, Yongxiang, Peng, Bowen, Liu, Li, and Li, Xiang
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence - Abstract
Transferable targeted adversarial attacks (TTAs) against deep neural networks have been proven significantly more challenging than untargeted ones, yet they remain relatively underexplored. This paper sheds new light on performing highly efficient yet transferable targeted attacks leveraging the simple gradient-based baseline. Our research underscores the critical importance of image transformations within gradient calculations, marking a shift from the prevalent emphasis on loss functions to address the gradient vanishing problem. Moreover, we have developed two effective blind estimators that facilitate the design of transformation strategies to enhance targeted transferability under black-box conditions. The adversarial examples' self-transferability to geometric transformations has been identified as strongly correlated with their black-box transferability, featuring these basic operations as potent yet overlapped proxies for facilitating targeted transferability. The surrogate self-alignment assessments further highlight simple scaling transformation's exceptional efficacy, which rivals that of most advanced methods. Building on these insights, we introduce a scaling-centered transformation strategy termed Strong, Self-transferable, faSt, and Simple Scale Transformation (S4ST) to enhance transferable targeted attacks. In experiments conducted on the ImageNet-Compatible benchmark dataset, our proposed S4ST attains a SOTA average targeted transfer success rate across various challenging black-box models, outperforming the previous leading method by over 14% while requiring only 25% of the execution time. Additionally, our approach eclipses SOTA attacks considerably and exhibits remarkable effectiveness against real-world APIs. This work marks a significant leap forward in TTAs, revealing the realistic threats they pose and providing a practical generation method for future research., Comment: 16 pages, 18 figures
- Published
- 2024
167. Stability for inverse random source problems of the polyharmonic wave equation
- Author
-
Li, Peijun, Li, Zhenqian, and Liang, Ying
- Subjects
Mathematics - Analysis of PDEs ,Mathematical Physics ,35R30, 35R60 - Abstract
This paper investigates stability estimates for inverse source problems in the stochastic polyharmonic wave equation, where the source is represented by white noise. The study examines the well-posedness of the direct problem and derives stability estimates for identifying the strength of the random source. Assuming a priori information of the regularity and support of the source strength, the H\"{o}lder stability is established in the absence of a potential. In the more challenging case where a potential is present, the logarithmic stability estimate is obtained by constructing specialized solutions to the polyharmonic wave equation.
- Published
- 2024
168. InterMask: 3D Human Interaction Generation via Collaborative Masked Modelling
- Author
-
Javed, Muhammad Gohar, Guo, Chuan, Cheng, Li, and Li, Xingyu
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Generating realistic 3D human-human interactions from textual descriptions remains a challenging task. Existing approaches, typically based on diffusion models, often generate unnatural and unrealistic results. In this work, we introduce InterMask, a novel framework for generating human interactions using collaborative masked modeling in discrete space. InterMask first employs a VQ-VAE to transform each motion sequence into a 2D discrete motion token map. Unlike traditional 1D VQ token maps, it better preserves fine-grained spatio-temporal details and promotes spatial awareness within each token. Building on this representation, InterMask utilizes a generative masked modeling framework to collaboratively model the tokens of two interacting individuals. This is achieved by employing a transformer architecture specifically designed to capture complex spatio-temporal interdependencies. During training, it randomly masks the motion tokens of both individuals and learns to predict them. In inference, starting from fully masked sequences, it progressively fills in the tokens for both individuals. With its enhanced motion representation, dedicated architecture, and effective learning strategy, InterMask achieves state-of-the-art results, producing high-fidelity and diverse human interactions. It outperforms previous methods, achieving an FID of $5.154$ (vs $5.535$ for in2IN) on the InterHuman dataset and $0.399$ (vs $5.207$ for InterGen) on the InterX dataset. Additionally, InterMask seamlessly supports reaction generation without the need for model redesign or fine-tuning., Comment: Project webpage: https://gohar-malik.github.io/intermask
- Published
- 2024
169. Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning
- Author
-
Jin, Pengfei, Shu, Peng, Kim, Sekeun, Xiao, Qing, Song, Sifan, Chen, Cheng, Liu, Tianming, Li, Xiang, and Li, Quanzheng
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Foundation models have become a cornerstone in deep learning, with techniques like Low-Rank Adaptation (LoRA) offering efficient fine-tuning of large models. Similarly, methods such as Retrieval-Augmented Generation (RAG), which leverage vectorized databases, have further improved model performance by grounding outputs in external information. While these approaches have demonstrated notable success, they often require extensive training or labeled data, which can limit their adaptability in resource-constrained environments. To address these challenges, we introduce Retrieval-based Parameter Ensemble (RPE), a new method that creates a vectorized database of LoRAs, enabling efficient retrieval and application of model adaptations to new tasks. RPE minimizes the need for extensive training and eliminates the requirement for labeled data, making it particularly effective for zero-shot learning. Additionally, RPE is well-suited for privacy-sensitive domains like healthcare, as it modifies model parameters without accessing raw data. When applied to tasks such as medical report generation and image segmentation, RPE not only proved effective but also surpassed supervised fine-tuning methods in certain cases, highlighting its potential to enhance both computational efficiency and privacy in deep learning applications.
- Published
- 2024
170. Towards Defining an Efficient and Expandable File Format for AI-Generated Contents
- Author
-
Gao, Yixin, Feng, Runsen, Li, Xin, Li, Weiping, and Chen, Zhibo
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Recently, AI-generated content (AIGC) has gained significant traction due to its powerful creation capability. However, the storage and transmission of large amounts of high-quality AIGC images inevitably pose new challenges for recent file formats. To overcome this, we define a new file format for AIGC images, named AIGIF, enabling ultra-low bitrate coding of AIGC images. Unlike compressing AIGC images intuitively with pixel-wise space as existing file formats, AIGIF instead compresses the generation syntax. This raises a crucial question: Which generation syntax elements, e.g., text prompt, device configuration, etc, are necessary for compression/transmission? To answer this question, we systematically investigate the effects of three essential factors: platform, generative model, and data configuration. We experimentally find that a well-designed composable bitstream structure incorporating the above three factors can achieve an impressive compression ratio of even up to 1/10,000 while still ensuring high fidelity. We also introduce an expandable syntax in AIGIF to support the extension of the most advanced generation models to be developed in the future.
- Published
- 2024
171. Real-time Fuel Leakage Detection via Online Change Point Detection
- Author
-
Chu, Ruimin, Chik, Li, Song, Yiliao, Chan, Jeffrey, and Li, Xiaodong
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
Early detection of fuel leakage at service stations with underground petroleum storage systems is a crucial task to prevent catastrophic hazards. Current data-driven fuel leakage detection methods employ offline statistical inventory reconciliation, leading to significant detection delays. Consequently, this can result in substantial financial loss and environmental impact on the surrounding community. In this paper, we propose a novel framework called Memory-based Online Change Point Detection (MOCPD) which operates in near real-time, enabling early detection of fuel leakage. MOCPD maintains a collection of representative historical data within a size-constrained memory, along with an adaptively computed threshold. Leaks are detected when the dissimilarity between the latest data and historical memory exceeds the current threshold. An update phase is incorporated in MOCPD to ensure diversity among historical samples in the memory. With this design, MOCPD is more robust and achieves a better recall rate while maintaining a reasonable precision score. We have conducted a variety of experiments comparing MOCPD to commonly used online change point detection (CPD) baselines on real-world fuel variance data with induced leakages, actual fuel leakage data and benchmark CPD datasets. Overall, MOCPD consistently outperforms the baseline methods in terms of detection accuracy, demonstrating its applicability to fuel leakage detection and CPD problems.
- Published
- 2024
172. MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection
- Author
-
Jiang, Xi, Li, Jian, Deng, Hanqiu, Liu, Yong, Gao, Bin-Bin, Zhou, Yifeng, Li, Jialin, Wang, Chengjie, and Zheng, Feng
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research., Comment: The code and data are available at https://github.com/jam-cc/MMAD
- Published
- 2024
173. Constraints on Covariant Horava-Lifshitz Gravity from precision measurement of planetary gravitomagnetic field
- Author
-
Zhang, Li-dong, Li, Li-Fang, Xu, Peng, Bian, Xing, and Luo, Ziren
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
As a generalization of Einstein's theory, Horava-Lifshitz has attracted significant interests due to its healthy ultraviolet behavior. In this paper, we analyze the impact of the Horava-Lifshitz corrections on the gravitomagnetic field. We propose a new planetary gravitomagnetic field measurement method with the help of the space-based laser interferometry, which is further used to constrain the Horava-Lifshitz parameters. Our analysis shows that the high-precision laser gradiometers can indeed limit the parameters in Horava-Lifshitz gravity and improve the results by one or two orders when compared with the existing theories. Our novel method provides insights into constraining the parameters in the modified gravitational theory, which facilitates a deeper understanding of this complex framework and paving the way for potential technological advancements in the field.
- Published
- 2024
174. A new type of bmo space for non-doubling measures
- Author
-
Li, Shining, Zhao, Haijing, and Li, Baode
- Subjects
Mathematics - Classical Analysis and ODEs - Abstract
Let $\mu$ be a Radon measure on $\mathbb R^{d}$ which may be non-doubling and only satisfies $\mu(Q(x,l))\le C_{0}l^{n}$} for all $x\in \mathbb R^{d}$, $l(Q)>0$, with some fixed constants $C_{0}>0$ and $n\in (0,d]$. We introduce a new type of $bmo(\mu)$ space which looks bigger than the $rbmo(\mu)$ space of Dachun Yang (JAMS,\,2005). And its four equivalent norms are established by constructing some special types of auxiliary doubling cubes. Then we further obtain that this new $rbmo(\mu)$ space actually coincides with the $rbmo(\mu)$ space of Dachun Yang.
- Published
- 2024
175. VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment
- Author
-
Li, Lei, Xie, Zhihui, Li, Mukai, Chen, Shunian, Wang, Peiyi, Chen, Liang, Yang, Yazheng, Wang, Benyou, Kong, Lingpeng, and Liu, Qi
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Computation and Language - Abstract
As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io., Comment: EMNLP 2024 Main Conference camera-ready version (fixed small typos). This article supersedes arXiv:2312.10665
- Published
- 2024
176. Elastic properties of Cu-6wt\%Ag alloy wires for pulsed magnets investigated by ultrasonic techniques
- Author
-
Li, Ziyu, Gu, Tianyi, Wei, Wenqi, Yuan, Yang, Wang, Zhuo, Luo, Kangjian, Pan, Yupeng, Xie, Jianfeng, Zhang, Shaozhe, Peng, Tao, Liu, Lin, Chen, Qi, Han, Xiaotao, Luo, Yongkang, and Li, Liang
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Superconductivity - Abstract
Conductor materials with good mechanical performance as well as high electrical- and thermal-conductivities are particularly important to break through the current bottle-neck limit ($\sim 100$ T) of pulsed magnets. Here we perform systematic studies on the elastic properties of the Cu-6wt%Ag alloy wires, a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques - resonant ultrasound spectroscopy (RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu-6wt%Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this chance to test the availability of our newly-built ultrasound pulse-echo facility at Wuhan National High Magnetic Field Center (WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu-6wt%Ag alloy wire remains excellent without anomalous softening under extreme conditions, e.g., ultra-high magnetic field up to 50 T, nitrogen / helium cryogenic liquids., Comment: 6 pages, 4 figures, 1 table
- Published
- 2024
177. GPTON: Generative Pre-trained Transformers enhanced with Ontology Narration for accurate annotation of biological data
- Author
-
Li, Rongbin, Chen, Wenbo, Li, Jinbo, Xing, Hanwen, Xu, Hua, Li, Zhao, and Zheng, W. Jim
- Subjects
Quantitative Biology - Quantitative Methods ,Computer Science - Artificial Intelligence ,J.3 ,I.2.7 - Abstract
By leveraging GPT-4 for ontology narration, we developed GPTON to infuse structured knowledge into LLMs through verbalized ontology terms, achieving accurate text and ontology annotations for over 68% of gene sets in the top five predictions. Manual evaluations confirm GPTON's robustness, highlighting its potential to harness LLMs and structured knowledge to significantly advance biomedical research beyond gene set annotation., Comment: 25 pages, 6 figures
- Published
- 2024
178. AM-SAM: Automated Prompting and Mask Calibration for Segment Anything Model
- Author
-
Li, Yuchen, Zhang, Li, Liang, Youwei, and Xie, Pengtao
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Segment Anything Model (SAM) has gained significant recognition in the field of semantic segmentation due to its versatile capabilities and impressive performance. Despite its success, SAM faces two primary limitations: (1) it relies heavily on meticulous human-provided prompts like key points, bounding boxes or text messages, which is labor-intensive; (2) the mask decoder's feature representation is sometimes inaccurate, as it solely employs dot product operations at the end of mask decoder, which inadequately captures the necessary correlations for precise segmentation. Current solutions to these problems such as fine-tuning SAM often require retraining a large number of parameters, which needs huge amount of time and computing resources. To address these limitations, we propose an automated prompting and mask calibration method called AM-SAM based on a bi-level optimization framework. Our approach automatically generates prompts for an input image, eliminating the need for human involvement with a good performance in early training epochs, achieving faster convergence. Additionally, we freeze the main part of SAM, and modify the mask decoder with Low-Rank Adaptation (LoRA), enhancing the mask decoder's feature representation by incorporating advanced techniques that go beyond simple dot product operations to more accurately capture and utilize feature correlations. Our experimental results demonstrate that AM-SAM achieves significantly accurate segmentation, matching or exceeding the effectiveness of human-generated and default prompts. Notably, on the body segmentation dataset, our method yields a 5% higher dice score with a 4-example few-shot training set compared to the SOTA method, underscoring its superiority in semantic segmentation tasks.
- Published
- 2024
179. ECVC: Exploiting Non-Local Correlations in Multiple Frames for Contextual Video Compression
- Author
-
Jiang, Wei, Li, Junru, Zhang, Kai, and Zhang, Li
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing - Abstract
In Learned Video Compression (LVC), improving inter prediction, such as enhancing temporal context mining and mitigating accumulated errors, is crucial for boosting rate-distortion performance. Existing LVCs mainly focus on mining the temporal movements within adjacent frames, neglecting non-local correlations among frames. Additionally, current contextual video compression models use a single reference frame, which is insufficient for handling complex movements. To address these issues, we propose leveraging non-local correlations across multiple frames to enhance temporal priors, significantly boosting rate-distortion performance. To mitigate error accumulation, we introduce a partial cascaded fine-tuning strategy that supports fine-tuning on full-length sequences with constrained computational resources. This method reduces the train-test mismatch in sequence lengths and significantly decreases accumulated errors. Based on the proposed techniques, we present a video compression scheme ECVC. Experiments demonstrate that our ECVC achieves state-of-the-art performance, reducing 7.3% and 10.5% more bit-rates than DCVC-DC and DCVC-FM over VTM-13.2 low delay B (LDB), respectively, when the intra period (IP) is 32. Additionally, ECVC reduces 11.1% more bit-rate than DCVC-FM over VTM-13.2 LDB when the IP is -1. Our Code will be available at https://github.com/JiangWeibeta/ECVC., Comment: Code will be available at https://github.com/JiangWeibeta/ECVC
- Published
- 2024
180. On the fully nonlinear Yamabe problem with constant boundary mean curvature. I
- Author
-
Chu, BaoZhi, Li, YanYan, and Li, Zongyuan
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Differential Geometry ,35J60 (Primary) 53C21, 58J05 (Secondary) - Abstract
In a recent paper, we established optimal Liouville-type theorems for conformally invariant second-order elliptic equations in the Euclidean space. In this work, we prove an optimal Liouville-type theorem for these equations in the half-Euclidean space.
- Published
- 2024
181. EG-SpikeFormer: Eye-Gaze Guided Transformer on Spiking Neural Networks for Medical Image Analysis
- Author
-
Pan, Yi, Jiang, Hanqi, Chen, Junhao, Li, Yiwei, Zhao, Huaqin, Zhou, Yifan, Shu, Peng, Wu, Zihao, Liu, Zhengliang, Zhu, Dajiang, Li, Xiang, Abate, Yohannes, and Liu, Tianming
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Computer Science - Neural and Evolutionary Computing - Abstract
Neuromorphic computing has emerged as a promising energy-efficient alternative to traditional artificial intelligence, predominantly utilizing spiking neural networks (SNNs) implemented on neuromorphic hardware. Significant advancements have been made in SNN-based convolutional neural networks (CNNs) and Transformer architectures. However, their applications in the medical imaging domain remain underexplored. In this study, we introduce EG-SpikeFormer, an SNN architecture designed for clinical tasks that integrates eye-gaze data to guide the model's focus on diagnostically relevant regions in medical images. This approach effectively addresses shortcut learning issues commonly observed in conventional models, especially in scenarios with limited clinical data and high demands for model reliability, generalizability, and transparency. Our EG-SpikeFormer not only demonstrates superior energy efficiency and performance in medical image classification tasks but also enhances clinical relevance. By incorporating eye-gaze data, the model improves interpretability and generalization, opening new directions for the application of neuromorphic computing in healthcare.
- Published
- 2024
182. Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models
- Author
-
Wang, Yule, Li, Chengrui, Li, Weihan, and Wu, Anqi
- Subjects
Quantitative Biology - Neurons and Cognition ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Understanding the neural basis of behavior is a fundamental goal in neuroscience. Current research in large-scale neuro-behavioral data analysis often relies on decoding models, which quantify behavioral information in neural data but lack details on behavior encoding. This raises an intriguing scientific question: ``how can we enable in-depth exploration of neural representations in behavioral tasks, revealing interpretable neural dynamics associated with behaviors''. However, addressing this issue is challenging due to the varied behavioral encoding across different brain regions and mixed selectivity at the population level. To tackle this limitation, our approach, named ``BeNeDiff'', first identifies a fine-grained and disentangled neural subspace using a behavior-informed latent variable model. It then employs state-of-the-art generative diffusion models to synthesize behavior videos that interpret the neural dynamics of each latent factor. We validate the method on multi-session datasets containing widefield calcium imaging recordings across the dorsal cortex. Through guiding the diffusion model to activate individual latent factors, we verify that the neural dynamics of latent factors in the disentangled neural subspace provide interpretable quantifications of the behaviors of interest. At the same time, the neural subspace in BeNeDiff demonstrates high disentanglement and neural reconstruction quality.
- Published
- 2024
183. Follow-up timing of 12 pulsars discovered in Commensal Radio Astronomy FAST Survey
- Author
-
Zhao, D., Yuan, J. P., Wang, N., Li, D., Wang, P., Xue, M. Y., Zhu, W. W., Miao, C. C., Yan, W. M., Wang, J. B., Yao, J. M., Wu, Q. D., Wang, S. Q., Sun, S. N., Kou, F. F., Chen, Y. T., Dang, S. J., Feng, Y., Liu, Z. J., Miao, X. L., Meng, L. Q., Yuan, M., Niu, C. H., Niu, J. R., Qian, L., Wang, S., Xie, X. Y., Xiao, Y. F., Yue, Y. L., You, S. P., Yu, X. H., Zhao, R. S., Yuen, R., Zhou, X., Zhang, L., Xie, M., Li, Y. X., Wang, C. J., Luo, Z. K., Gan, Z. Y., Sun, Z. Y., and Chi, M. m.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present phase-connected timing ephemerides, polarization pulse profiles and Faraday rotation measurements of 12 pulsars discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal Radio Astronomy FAST Survey (CRAFTS). The observational data for each pulsar span at least one year. Among them, PSR J1840+2843 shows subpulse drifting, and five pulsars are detected to exhibit pulse nulling phenomena. PSR J0640$-$0139 and PSR J2031$-$1254 are isolated MSPs with stable spin-down rates ($\dot{P}$) of $4.8981(6) \times $10$^{-20}$\,s\,s$^{-1}$ and $6.01(2) \times $10$^{-21}$\,s\,s$^{-1}$, respectively. Additionally, one pulsar (PSR J1602$-$0611) is in a neutron star - white dwarf binary system with 18.23-d orbit and a companion of $\leq$ 0.65M$_{\odot}$. PSR J1602$-$0611 has a spin period, companion mass, and orbital eccentricity that are consistent with the theoretical expectations for MSP - Helium white dwarf (He - WD) systems. Therefore, we believe it might be an MSP-He WD binary system. The locations of PSRs J1751$-$0542 and J1840+2843 on the $P-\dot{P}$ diagram are beyond the traditional death line. This indicates that FAST has discovered some low $\dot{E}$ pulsars, contributing new samples for testing pulsar radiation theories. We estimated the distances of these 12 pulsars based on NE2001 and YMW16 electron density models, and our work enhances the dataset for investigating the electron density model of the Galaxy., Comment: 20 pages, 15 figures, accepted for publication in ApJ
- Published
- 2024
184. LLM$\times$MapReduce: Simplified Long-Sequence Processing using Large Language Models
- Author
-
Zhou, Zihan, Li, Chong, Chen, Xinyi, Wang, Shuo, Chao, Yu, Li, Zhili, Wang, Haoyu, An, Rongqiao, Shi, Qi, Tan, Zhixing, Han, Xu, Shi, Xiaodong, Liu, Zhiyuan, and Sun, Maosong
- Subjects
Computer Science - Computation and Language - Abstract
Enlarging the context window of large language models (LLMs) has become a crucial research area, particularly for applications involving extremely long texts. In this work, we propose a novel training-free framework for processing long texts, utilizing a divide-and-conquer strategy to achieve comprehensive document understanding. The proposed LLM$\times$MapReduce framework splits the entire document into several chunks for LLMs to read and then aggregates the intermediate answers to produce the final output. The main challenge for divide-and-conquer long text processing frameworks lies in the risk of losing essential long-range information when splitting the document, which can lead the model to produce incomplete or incorrect answers based on the segmented texts. Disrupted long-range information can be classified into two categories: inter-chunk dependency and inter-chunk conflict. We design a structured information protocol to better cope with inter-chunk dependency and an in-context confidence calibration mechanism to resolve inter-chunk conflicts. Experimental results demonstrate that LLM$\times$MapReduce can outperform representative open-source and commercial long-context LLMs, and is applicable to several different models., Comment: Work in Progress. Code: https://github.com/thunlp/LLMxMapReduce
- Published
- 2024
185. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
186. When Graph meets Multimodal: Benchmarking on Multimodal Attributed Graphs Learning
- Author
-
Yan, Hao, Li, Chaozhuo, Yu, Zhigang, Yin, Jun, Liu, Ruochen, Zhang, Peiyan, Han, Weihao, Li, Mingzheng, Zeng, Zhengxin, Sun, Hao, Deng, Weiwei, Sun, Feng, Zhang, Qi, and Wang, Senzhang
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Multimodal attributed graphs (MAGs) are prevalent in various real-world scenarios and generally contain two kinds of knowledge: (a) Attribute knowledge is mainly supported by the attributes of different modalities contained in nodes (entities) themselves, such as texts and images. (b) Topology knowledge, on the other hand, is provided by the complex interactions posed between nodes. The cornerstone of MAG representation learning lies in the seamless integration of multimodal attributes and topology. Recent advancements in Pre-trained Language/Vision models (PLMs/PVMs) and Graph neural networks (GNNs) have facilitated effective learning on MAGs, garnering increased research interest. However, the absence of meaningful benchmark datasets and standardized evaluation procedures for MAG representation learning has impeded progress in this field. In this paper, we propose Multimodal Attribute Graph Benchmark (MAGB)}, a comprehensive and diverse collection of challenging benchmark datasets for MAGs. The MAGB datasets are notably large in scale and encompass a wide range of domains, spanning from e-commerce networks to social networks. In addition to the brand-new datasets, we conduct extensive benchmark experiments over MAGB with various learning paradigms, ranging from GNN-based and PLM-based methods, to explore the necessity and feasibility of integrating multimodal attributes and graph topology. In a nutshell, we provide an overview of the MAG datasets, standardized evaluation procedures, and present baseline experiments. The entire MAGB project is publicly accessible at https://github.com/sktsherlock/ATG.
- Published
- 2024
187. DA-Ada: Learning Domain-Aware Adapter for Domain Adaptive Object Detection
- Author
-
Li, Haochen, Zhang, Rui, Yao, Hantao, Zhang, Xin, Hao, Yifan, Song, Xinkai, Li, Xiaqing, Zhao, Yongwei, Li, Ling, and Chen, Yunji
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge on unseen images, freezing the visual encoder and inserting a domain-agnostic adapter can learn domain-invariant knowledge for DAOD. However, the domain-agnostic adapter is inevitably biased to the source domain. It discards some beneficial knowledge discriminative on the unlabelled domain, i.e., domain-specific knowledge of the target domain. To solve the issue, we propose a novel Domain-Aware Adapter (DA-Ada) tailored for the DAOD task. The key point is exploiting domain-specific knowledge between the essential general knowledge and domain-invariant knowledge. DA-Ada consists of the Domain-Invariant Adapter (DIA) for learning domain-invariant knowledge and the Domain-Specific Adapter (DSA) for injecting the domain-specific knowledge from the information discarded by the visual encoder. Comprehensive experiments over multiple DAOD tasks show that DA-Ada can efficiently infer a domain-aware visual encoder for boosting domain adaptive object detection. Our code is available at https://github.com/Therock90421/DA-Ada., Comment: Accepted by NeurIPS 2024
- Published
- 2024
188. Voxel-SLAM: A Complete, Accurate, and Versatile LiDAR-Inertial SLAM System
- Author
-
Liu, Zheng, Li, Haotian, Yuan, Chongjian, Liu, Xiyuan, Lin, Jiarong, Li, Rundong, Zheng, Chunran, Zhou, Bingyang, Liu, Wenyi, and Zhang, Fu
- Subjects
Computer Science - Robotics - Abstract
In this work, we present Voxel-SLAM: a complete, accurate, and versatile LiDAR-inertial SLAM system that fully utilizes short-term, mid-term, long-term, and multi-map data associations to achieve real-time estimation and high precision mapping. The system consists of five modules: initialization, odometry, local mapping, loop closure, and global mapping, all employing the same map representation, an adaptive voxel map. The initialization provides an accurate initial state estimation and a consistent local map for subsequent modules, enabling the system to start with a highly dynamic initial state. The odometry, exploiting the short-term data association, rapidly estimates current states and detects potential system divergence. The local mapping, exploiting the mid-term data association, employs a local LiDAR-inertial bundle adjustment (BA) to refine the states (and the local map) within a sliding window of recent LiDAR scans. The loop closure detects previously visited places in the current and all previous sessions. The global mapping refines the global map with an efficient hierarchical global BA. The loop closure and global mapping both exploit long-term and multi-map data associations. We conducted a comprehensive benchmark comparison with other state-of-the-art methods across 30 sequences from three representative scenes, including narrow indoor environments using hand-held equipment, large-scale wilderness environments with aerial robots, and urban environments on vehicle platforms. Other experiments demonstrate the robustness and efficiency of the initialization, the capacity to work in multiple sessions, and relocalization in degenerated environments.
- Published
- 2024
189. One-shot Generative Domain Adaptation in 3D GANs
- Author
-
Li, Ziqiang, Wu, Yi, Wang, Chaoyue, Rui, Xue, and Li, Bin
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
3D-aware image generation necessitates extensive training data to ensure stable training and mitigate the risk of overfitting. This paper first considers a novel task known as One-shot 3D Generative Domain Adaptation (GDA), aimed at transferring a pre-trained 3D generator from one domain to a new one, relying solely on a single reference image. One-shot 3D GDA is characterized by the pursuit of specific attributes, namely, high fidelity, large diversity, cross-domain consistency, and multi-view consistency. Within this paper, we introduce 3D-Adapter, the first one-shot 3D GDA method, for diverse and faithful generation. Our approach begins by judiciously selecting a restricted weight set for fine-tuning, and subsequently leverages four advanced loss functions to facilitate adaptation. An efficient progressive fine-tuning strategy is also implemented to enhance the adaptation process. The synergy of these three technological components empowers 3D-Adapter to achieve remarkable performance, substantiated both quantitatively and qualitatively, across all desired properties of 3D GDA. Furthermore, 3D-Adapter seamlessly extends its capabilities to zero-shot scenarios, and preserves the potential for crucial tasks such as interpolation, reconstruction, and editing within the latent space of the pre-trained generator. Code will be available at https://github.com/iceli1007/3D-Adapter., Comment: IJCV
- Published
- 2024
190. StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization
- Author
-
Li, Zhuoqun, Chen, Xuanang, Yu, Haiyang, Lin, Hongyu, Lu, Yaojie, Tang, Qiaoyu, Huang, Fei, Han, Xianpei, Sun, Le, and Li, Yongbin
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs) in many knowledge-based tasks. However, existing RAG methods struggle with knowledge-intensive reasoning tasks, because useful information required to these tasks are badly scattered. This characteristic makes it difficult for existing RAG methods to accurately identify key information and perform global reasoning with such noisy augmentation. In this paper, motivated by the cognitive theories that humans convert raw information into various structured knowledge when tackling knowledge-intensive reasoning, we proposes a new framework, StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure. Extensive experiments across various knowledge-intensive tasks show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios, demonstrating its potential as an effective solution for enhancing LLMs in complex real-world applications.
- Published
- 2024
191. DeltaDQ: Ultra-High Delta Compression for Fine-Tuned LLMs via Group-wise Dropout and Separate Quantization
- Author
-
Jiang, Yanfeng, Yang, Zelan, Chen, Bohua, Li, Shen, Li, Yong, and Li, Tao
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Large language models achieve exceptional performance on various downstream tasks through supervised fine-tuning. However, the diversity of downstream tasks and practical requirements makes deploying multiple full-parameter fine-tuned models challenging. Current methods that compress the delta weight struggle to achieve ultra-high compression, failing to minimize the deployment overhead. To address the above issue, we propose a novel distribution-driven delta compression framework DeltaDQ, which utilizes Group-wise Dropout and Separate Quantization to achieve ultra-high compression for the delta weight. We have observed that the matrix-computed intermediate results for the delta weight exhibit extremely small variance and min-max range characteristics, referred to as Balanced Intermediate Results. Exploiting this phenomenon, we introduce Group-wise Dropout to perform dropout on the delta weight using an optimal group size. Furthermore, using Separate Quantization, sparse weights are quantized and decomposed to achieve a lower bit. Experimental results show that DeltaDQ achieves 16x compression with improved accuracy compared to baselines for WizardMath and WizardCoder models across different parameter scales. Moreover, DeltaDQ demonstrates the ability for ultra-high compression ratio, achieving 128x compression for the WizardMath-7B model and 512x compression for the WizardMath-70B model.
- Published
- 2024
192. Observation of $D^+\to\eta^\prime\mu^+\nu_\mu$ and First Study of $D^+\to \eta^\prime \ell^+\nu_\ell$ Decay Dynamics
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Y. S., Hussain, T., Hölzken, F., Hüsken, N., der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, K., Li, L. J., Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Y., Li, X. Z., Li, Y. G., Li, Z. J., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, Y. P., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F., Liu, F. H., Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. H., Liu, H. M., Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, L. R., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, S. S, Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, M., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y., Xu, Y. C., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, T., Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., Yin, Junhao, You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, M. C., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y., Zhang, S. H., Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y, Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, L., Zhao, Lei, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhou, Z. C., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using $20.3\,\rm fb^{-1}$ of $e^+e^-$ collision data collected at the center-of-mass energy 3.773\,GeV with the BESIII detector, we report the first observation of the semileptonic decay $D^+\to \eta^\prime \mu^+\nu_\mu$ with significance of $8.6\sigma$ including systematic uncertainties, and an improved measurement of $D^+\to \eta^\prime e^+\nu_e$. The branching fractions of $D^+\to \eta^\prime \mu^+\nu_\mu$ and $D^+\to \eta^\prime e^+\nu_e$ are determined to be $(1.92\pm0.28_{\rm stat}\pm 0.08_{\rm syst})\times 10^{-4}$ and $(1.79\pm0.19_{\rm stat}\pm 0.07_{\rm syst})\times 10^{-4}$, respectively. From an analysis of the $D^+\to \eta^\prime \ell^+\nu_\ell$ decay dynamics, the product of the hadronic form factor $f_+^{\eta^{\prime}}(0)$ and the CKM matrix element $|V_{cd}|$ is measured for the first time, giving $f^{\eta^\prime}_+(0)|V_{cd}| = (5.92\pm0.56_{\rm stat}\pm0.13_{\rm syst})\times 10^{-2}$. No evidence for violation of $\mu-e$ lepton-flavor universality is found in both the full range and several bins of $\ell^+\nu_\ell$ four-momentum transfer. The $\eta-\eta^\prime$ mixing angle in the quark flavor basis is determined to be $\phi_{\rm P} =(39.8\pm0.8_{\rm stat}\pm0.3_{\rm syst})^\circ$.
- Published
- 2024
193. Observation of time-dependent $CP$ violation and measurement of the branching fraction of $B^0 \to J/\psi \pi^0$ decays
- Author
-
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bianchi, F., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., De La Cruz-Burelo, E., De La Motte, S. A., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Epifanov, D., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironella, P., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Granderath, S., Graziani, E., Gruberová, Z., Guan, Y., Gudkova, K., Haide, I., Han, Y., Hara, T., Hayashii, H., Hazra, S., Hearty, C., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kalita, D., Kandra, J., Kang, K. H., Kang, S., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lalwani, K., Lam, T., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Maggiora, M., Maharana, S. P., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Maurya, S. K., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Reif, M., Reiter, S., Remnev, M., Reuter, L., Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schoenning, K., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Song, W., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Uchida, M., Ueda, I., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Veronesi, M., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yelton, J., Yin, J. H., Yoshihara, K., Yusa, Y., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We present a measurement of the branching fraction and time-dependent charge-parity ($CP$) decay-rate asymmetries in $B^0 \to J/\psi \pi^0$ decays. The data sample was collected with the Belle~II detector at the SuperKEKB asymmetric $e^+e^-$ collider in 2019-2022 and contains $(387\pm 6)\times 10^6$ $B\overline{B}$ meson pairs from $\Upsilon(4S)$ decays. We reconstruct $392\pm 24$ signal decays and fit the $CP$ parameters from the distribution of the proper-decay-time difference of the two $B$ mesons. We measure the branching fraction to be $B(B^0 \to J/\psi \pi^0)=(2.02 \pm 0.12 \pm 0.10)\times 10^{-5}$ and the direct and mixing-induced $CP$ asymmetries to be $C_{CP}=0.13 \pm 0.12 \pm 0.03$ and $S_{CP}=-0.88 \pm 0.17 \pm 0.03$, respectively, where the first uncertainties are statistical and the second are systematic. We observe mixing-induced $CP$ violation with a significance of $5.0$ standard deviations for the first time in this mode.
- Published
- 2024
194. Dual-AEB: Synergizing Rule-Based and Multimodal Large Language Models for Effective Emergency Braking
- Author
-
Zhang, Wei, Li, Pengfei, Wang, Junli, Sun, Bingchuan, Jin, Qihao, Bao, Guangjun, Rui, Shibo, Yu, Yang, Ding, Wenchao, Li, Peng, and Chen, Yilun
- Subjects
Computer Science - Robotics - Abstract
Automatic Emergency Braking (AEB) systems are a crucial component in ensuring the safety of passengers in autonomous vehicles. Conventional AEB systems primarily rely on closed-set perception modules to recognize traffic conditions and assess collision risks. To enhance the adaptability of AEB systems in open scenarios, we propose Dual-AEB, a system combines an advanced multimodal large language model (MLLM) for comprehensive scene understanding and a conventional rule-based rapid AEB to ensure quick response times. To the best of our knowledge, Dual-AEB is the first method to incorporate MLLMs within AEB systems. Through extensive experimentation, we have validated the effectiveness of our method. The source code will be available at https://github.com/ChipsICU/Dual-AEB.
- Published
- 2024
195. Baichuan-Omni Technical Report
- Author
-
Li, Yadong, Sun, Haoze, Lin, Mingan, Li, Tianpeng, Dong, Guosheng, Zhang, Tao, Ding, Bowen, Song, Wei, Cheng, Zhenglin, Huo, Yuqi, Chen, Song, Li, Xu, Pan, Da, Zhang, Shusen, Wu, Xin, Liang, Zheng, Liu, Jun, Lu, Keer, Zhao, Yaqi, Shen, Yanjun, Yang, Fan, Yu, Kaicheng, Lin, Tao, Xu, Jianhua, Zhou, Zenan, and Chen, Weipeng
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
The salient multimodal capabilities and interactive experience of GPT-4o highlight its critical role in practical applications, yet it lacks a high-performing open-source counterpart. In this paper, we introduce Baichuan-Omni, the first open-source 7B Multimodal Large Language Model (MLLM) adept at concurrently processing and analyzing modalities of image, video, audio, and text, while delivering an advanced multimodal interactive experience and strong performance. We propose an effective multimodal training schema starting with 7B model and proceeding through two stages of multimodal alignment and multitask fine-tuning across audio, image, video, and text modal. This approach equips the language model with the ability to handle visual and audio data effectively. Demonstrating strong performance across various omni-modal and multimodal benchmarks, we aim for this contribution to serve as a competitive baseline for the open-source community in advancing multimodal understanding and real-time interaction.
- Published
- 2024
196. Ego3DT: Tracking Every 3D Object in Ego-centric Videos
- Author
-
Hao, Shengyu, Chai, Wenhao, Zhao, Zhonghan, Sun, Meiqi, Hu, Wendi, Zhou, Jieyang, Zhao, Yixian, Li, Qi, Wang, Yizhou, Li, Xi, and Wang, Gaoang
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Multimedia - Abstract
The growing interest in embodied intelligence has brought ego-centric perspectives to contemporary research. One significant challenge within this realm is the accurate localization and tracking of objects in ego-centric videos, primarily due to the substantial variability in viewing angles. Addressing this issue, this paper introduces a novel zero-shot approach for the 3D reconstruction and tracking of all objects from the ego-centric video. We present Ego3DT, a novel framework that initially identifies and extracts detection and segmentation information of objects within the ego environment. Utilizing information from adjacent video frames, Ego3DT dynamically constructs a 3D scene of the ego view using a pre-trained 3D scene reconstruction model. Additionally, we have innovated a dynamic hierarchical association mechanism for creating stable 3D tracking trajectories of objects in ego-centric videos. Moreover, the efficacy of our approach is corroborated by extensive experiments on two newly compiled datasets, with 1.04x - 2.90x in HOTA, showcasing the robustness and accuracy of our method in diverse ego-centric scenarios., Comment: Accepted by ACM Multimedia 2024
- Published
- 2024
197. Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
- Author
-
Li, Binghui and Li, Yuanzhi
- Subjects
Computer Science - Machine Learning - Abstract
Adversarial training is a widely-applied approach to training deep neural networks to be robust against adversarial perturbation. However, although adversarial training has achieved empirical success in practice, it still remains unclear why adversarial examples exist and how adversarial training methods improve model robustness. In this paper, we provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory. Specifically, we focus on a multiple classification setting, where the structured data can be composed of two types of features: the robust features, which are resistant to perturbation but sparse, and the non-robust features, which are susceptible to perturbation but dense. We train a two-layer smoothed ReLU convolutional neural network to learn our structured data. First, we prove that by using standard training (gradient descent over the empirical risk), the network learner primarily learns the non-robust feature rather than the robust feature, which thereby leads to the adversarial examples that are generated by perturbations aligned with negative non-robust feature directions. Then, we consider the gradient-based adversarial training algorithm, which runs gradient ascent to find adversarial examples and runs gradient descent over the empirical risk at adversarial examples to update models. We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning to improve the network robustness. Finally, we also empirically validate our theoretical findings with experiments on real-image datasets, including MNIST, CIFAR10 and SVHN., Comment: 34 pages, Mathematics of Modern Machine Learning Workshop at NeurIPS 2024
- Published
- 2024
198. DAT: Dialogue-Aware Transformer with Modality-Group Fusion for Human Engagement Estimation
- Author
-
Li, Jia, Yu, Yangchen, Chen, Yin, Zhang, Yu, Jia, Peng, Xu, Yunbo, Li, Ziqiang, Wang, Meng, and Hong, Richang
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Engagement estimation plays a crucial role in understanding human social behaviors, attracting increasing research interests in fields such as affective computing and human-computer interaction. In this paper, we propose a Dialogue-Aware Transformer framework (DAT) with Modality-Group Fusion (MGF), which relies solely on audio-visual input and is language-independent, for estimating human engagement in conversations. Specifically, our method employs a modality-group fusion strategy that independently fuses audio and visual features within each modality for each person before inferring the entire audio-visual content. This strategy significantly enhances the model's performance and robustness. Additionally, to better estimate the target participant's engagement levels, the introduced Dialogue-Aware Transformer considers both the participant's behavior and cues from their conversational partners. Our method was rigorously tested in the Multi-Domain Engagement Estimation Challenge held by MultiMediate'24, demonstrating notable improvements in engagement-level regression precision over the baseline model. Notably, our approach achieves a CCC score of 0.76 on the NoXi Base test set and an average CCC of 0.64 across the NoXi Base, NoXi-Add, and MPIIGI test sets., Comment: 1st Place on the NoXi Base dataset in the Multi-Domain Engagement Estimation Challenge held by MultiMediate 24, accepted by ACM Multimedia 2024. The source code is available at \url{https://github.com/MSA-LMC/DAT}
- Published
- 2024
199. Unity is Power: Semi-Asynchronous Collaborative Training of Large-Scale Models with Structured Pruning in Resource-Limited Clients
- Author
-
Li, Yan, Li, Mingyi, Zhang, Xiao, Xu, Guangwei, Chen, Feng, Yuan, Yuan, Zou, Yifei, Zhao, Mengying, Lu, Jianbo, and Yu, Dongxiao
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Machine Learning - Abstract
In this work, we study to release the potential of massive heterogeneous weak computing power to collaboratively train large-scale models on dispersed datasets. In order to improve both efficiency and accuracy in resource-adaptive collaborative learning, we take the first step to consider the \textit{unstructured pruning}, \textit{varying submodel architectures}, \textit{knowledge loss}, and \textit{straggler} challenges simultaneously. We propose a novel semi-asynchronous collaborative training framework, namely ${Co\text{-}S}^2{P}$, with data distribution-aware structured pruning and cross-block knowledge transfer mechanism to address the above concerns. Furthermore, we provide theoretical proof that ${Co\text{-}S}^2{P}$ can achieve asymptotic optimal convergence rate of $O(1/\sqrt{N^*EQ})$. Finally, we conduct extensive experiments on a real-world hardware testbed, in which 16 heterogeneous Jetson devices can be united to train large-scale models with parameters up to 0.11 billion. The experimental results demonstrate that $Co\text{-}S^2P$ improves accuracy by up to 8.8\% and resource utilization by up to 1.2$\times$ compared to state-of-the-art methods, while reducing memory consumption by approximately 22\% and training time by about 24\% on all resource-limited devices., Comment: 24 Pages, 12 figures
- Published
- 2024
200. Towards Foundation Models for Mixed Integer Linear Programming
- Author
-
Li, Sirui, Kulkarni, Janardhan, Menache, Ishai, Wu, Cathy, and Li, Beibin
- Subjects
Computer Science - Machine Learning - Abstract
Mixed Integer Linear Programming (MILP) is essential for modeling complex decision-making problems but faces challenges in computational tractability and requires expert formulation. Current deep learning approaches for MILP focus on specific problem classes and do not generalize to unseen classes. To address this shortcoming, we take a foundation model training approach, where we train a single deep learning model on a diverse set of MILP problems to generalize across problem classes. As existing datasets for MILP lack diversity and volume, we introduce MILP-Evolve, a novel LLM-based evolutionary framework that is capable of generating a large set of diverse MILP classes with an unlimited amount of instances. We study our methodology on three key learning tasks that capture diverse aspects of MILP: (1) integrality gap prediction, (2) learning to branch, and (3) a new task of aligning MILP instances with natural language descriptions. Our empirical results show that models trained on the data generated by MILP-Evolve achieve significant improvements on unseen problems, including MIPLIB benchmarks. Our work highlights the potential of moving towards a foundation model approach for MILP that can generalize to a broad range of MILP applications. We are committed to fully open-sourcing our work to advance further research.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.