151. Obesity-inducing lesions of the central nervous system alter leptin uptake by the blood-brain barrier.
- Author
-
Banks WA, King BM, Rossiter KN, Olson RD, Olson GA, and Kastin AJ
- Subjects
- Amygdala injuries, Animals, Female, Hypothalamus injuries, Obesity etiology, Paraventricular Hypothalamic Nucleus injuries, Rats, Rats, Long-Evans, Weight Gain, Amygdala metabolism, Blood-Brain Barrier physiology, Hypothalamus metabolism, Leptin metabolism, Obesity metabolism, Paraventricular Hypothalamic Nucleus metabolism
- Abstract
Leptin regulates body adiposity by decreasing feeding and increasing thermogenesis. Obese humans and some obese rodents are resistant to peripherally administered leptin, suggesting a defect in the transport of leptin across the blood-brain barrier (BBB). Defective transport of exogenous leptin occurs in some models of obesity, but in other models transport is normal. This shows that factors other than obesity are associated with impairment of leptin transport across the BBB. In order to further investigate these factors, we determined leptin transport in rats made obese by lesioning of the ventromedial hypothalamus (VMH), paraventricular nucleus (PVN), or posterodorsal amygdala (PDA). These regions all contain leptin receptors and lesions there induce obesity and hyperleptinemia and alter the levels of many feeding hormones which might participate in leptin transporter regulation. We measured the uptake of radioactively labeled leptin by the BBB by multiple-time regression analysis which divides uptake into a reversible phase (Vi, e.g., receptor/transporter binding to the brain endothelial cell) and an irreversible phase (Ki, complete transport across the BBB). Leptin uptake was not affected in rats with VMH lesions. No significant change occurred in the entry rate (Ki) for any group, although Ki declined by over 35% in rats with PVN lesions. Decreased uptake was observed in rats with PVN lesions and with PDA lesions. This was primarily due to a reduced Vi (about 21% for the PDA). This decreased uptake is most likely explained by decreased binding of leptin to the brain endothelial cell, which could be because of decreased binding by either receptors or transporters. This suggests that some of the feeding hormones controlled by the PVN and PDA may participate in regulating leptin uptake by the BBB.
- Published
- 2001
- Full Text
- View/download PDF