Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Generalitat Valenciana, Universitat Politècnica de València, Ministerio de Ciencia, Innovación y Universidades, Ministerio de Economía, Industria y Competitividad, Navarro-Jiménez, José-Manuel, Navarro-García, Héctor, Tur Valiente, Manuel, Ródenas, Juan José, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Generalitat Valenciana, Universitat Politècnica de València, Ministerio de Ciencia, Innovación y Universidades, Ministerio de Economía, Industria y Competitividad, Navarro-Jiménez, José-Manuel, Navarro-García, Héctor, Tur Valiente, Manuel, and Ródenas, Juan José
"This is the peer reviewed version of the following article: Navarro-Jiménez, José M., Héctor Navarro-García, Manuel Tur, and Juan J. Ródenas. 2019. Superconvergent Patch Recovery with Constraints for Three-dimensional Contact Problems within the Cartesian Grid Finite Element Method. International Journal for Numerical Methods in Engineering 121 (6). Wiley: 1297 1313. doi:10.1002/nme.6266, which has been published in final form at https://doi.org/10.1002/nme.6266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.", [EN] The superconvergent patch recovery technique with constraints (SPR-C) consists in improving the accuracy of the recovered stresses obtained with the original SPR technique by considering known information about the exact solution, like the internal equilibrium equation, the compatibility equation or the Neumann boundary conditions, during the recovery process. In this paper the SPR-C is extended to consider the equilibrium around the contact area when solving contact problems with the Cartesian grid Finite Element Method. In the proposed method, the Finite Element stress fields of both bodies in contact are considered during the recovery process and the equilibrium is enforced by means of the continuity of tractions along the contact surface.