151. AML1 mutations induced MDS and MDS/AML in a mouse BMT model
- Author
-
Toshio Kitamura, Yukiko Komeno, Tetsuya Nosaka, Toshiya Inaba, Hironori Harada, Naoko Watanabe-Okochi, Yuka Harada, Hideaki Nakajima, Ryoichi Ono, and Jiro Kitaura
- Subjects
Myeloid ,Leukocytosis ,Pancytopenia ,Immunology ,Erythroid dysplasia ,Biochemistry ,chemistry.chemical_compound ,Myelogenous ,Mice ,Erythroid Cells ,Transduction, Genetic ,hemic and lymphatic diseases ,Proto-Oncogenes ,medicine ,Animals ,Humans ,Cell Lineage ,Neoplasm Invasiveness ,neoplasms ,Bone Marrow Transplantation ,Acute leukemia ,business.industry ,Myelodysplastic syndromes ,Cell Biology ,Hematology ,Leukopenia ,medicine.disease ,MDS1 and EVI1 Complex Locus Protein ,Blood Cell Count ,Transplantation ,DNA-Binding Proteins ,Mice, Inbred C57BL ,Leukemia ,Disease Models, Animal ,Leukemia, Myeloid, Acute ,medicine.anatomical_structure ,RUNX1 ,chemistry ,Myelodysplastic Syndromes ,Core Binding Factor Alpha 2 Subunit ,Mutation ,NIH 3T3 Cells ,Mutant Proteins ,business ,Spleen ,Transcription Factors - Abstract
Myelodysplastic syndrome (MDS) is a hematopoietic stem-cell disorder characterized by trilineage dysplasia and susceptibility to acute myelogenous leukemia (AML). Analysis of molecular basis of MDS has been hampered by the heterogeneity of the disease. Recently, mutations of the transcription factor AML1/RUNX1 have been identified in 15% to 40% of MDS–refractory anemia with excess of blasts (RAEB) and MDS/AML. We performed mouse bone marrow transplantation (BMT) using bone marrow cells transduced with the AML1 mutants. Most mice developed MDS and MDS/AML-like symptoms within 4 to 13 months after BMT. Interestingly, among integration sites identified, Evi1 seemed to collaborate with an AML1 mutant harboring a point mutation in the Runt homology domain (D171N) to induce MDS/AML with an identical phenotype characterized by marked hepatosplenomegaly, myeloid dysplasia, leukocytosis, and biphenotypic surface markers. Collaboration between AML1-D171N and Evi1 was confirmed by a BMT model where coexpression of AML1-D171N and Evi1 induced acute leukemia of the same phenotype with much shorter latencies. On the other hand, a C-terminal truncated AML1 mutant (S291fsX300) induced pancytopenia with erythroid dysplasia in transplanted mice, followed by progression to MDS-RAEB or MDS/AML. Thus, we have developed a useful mouse model of MDS/AML that should help in the understanding of the molecular basis of MDS and the progression of MDS to overt leukemia.
- Published
- 2008