151. A new high-resolution Coastal Ice-Ocean Prediction System for the East Coast of Canada.
- Author
-
Paquin, Jean-Philippe, Roy, François, Smith, Gregory C., MacDermid, Sarah, Ji Lei, Dupont, Frédéric, Youyu Lu, Taylor, Stephanne, St-Onge-Drouin, Simon, Blanken, Hauke, Dunphy, Michael, and Soontiens, Nancy
- Subjects
GULF Stream ,OCEAN temperature ,LATERAL loads ,WATER levels ,CONTINENTAL shelf ,SEA ice - Abstract
This paper describes the Coastal Ice Ocean Prediction System for the East Coast of Canada (CIOPS-E) running operationally at Environment and Climate Change Canada (ECCC). CIOPS-E uses a one-way downscaling technique on a 1/36° horizontal grid (~2 km) to simulate high-resolution ice and ocean conditions over the northwest Atlantic Ocean and the Gulf of St. Lawrence (GSL). CIOPS-E is forced at its lateral boundaries with ECCC's Regional Ice-Ocean Prediction System (RIOPS) and tidal conditions from the Oregon State University TPXO model. The three-dimensional temperature and salinity fields are spectrally nudged towards the RIOPS solution offshore of the 1500 m isobath to, effectively constrain mesoscale features in the Gulf Stream area. Over the continental shelf and the GSL, the CIOPS-E solution is free to develop fully according to model dynamics. CIOPS-E is evaluated over one year from March 2019 to February 2020. Overall, the CIOPS-E improves the representation of tides compared to ECCC's lower resolution systems: RIOPS (1/12°) and the Regional Marine Prediction System - Gulf of St. Lawrence (RMPS-GSL, 5 km). The accuracy of the tides are comparable to the TPXO at most coastal tide gauges. Sub-tidal water levels from CIOPS-E agree well with the observed seasonal variability and show improved errors statistics at all stations compared to RIOPS and RMPS-GSL. Improvements are especially noted for the GSL. Sea surface temperatures (SSTs) from CIOPS-E are lower (higher) in spring (fall) over most of the GSL compared to satellite-derived analyses and RIOPS. Comparison with in-situ observations of SST show significant improvement in CIOPS-E with respect to the RMPS-GSL. Lastly, sea ice conditions in the GSL are compared with the Canadian Ice Service (CIS) charts and the RMPS-GSL model. The sea ice cover and thickness from the pseudo-analysis component (without data assimilation) shows an overestimation compared to the CIS estimates, which is subsequently corrected in the forecast phase through the direct insertion of a Radarsat image analysis product. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF