151. Comparison of1AGeV197Au+Cdata with thermodynamics: The nature of the phase transition in nuclear multifragmentation
- Author
-
M. A. McMahan, A. Scott, J. O. Rasmussen, H. G. Ritter, A. Insolia, D. L. Olson, H. Sann, P. Warren, D. Keane, G.V. Russo, M. L. Gilkes, T. Wienold, H. H. Wieman, G. Rai, J. L. Chance, Salvatore Costa, J. A. Hauger, E. L. Hjort, D. Cebra, T. J. M. Symons, Renato Potenza, M. Justice, J. B. Elliott, A. D. Chacon, M. A. Lisa, B. K. Srivastava, A. S. Hirsch, F. P. Brady, M. L. Tincknell, N. T. Porile, Z. Caccia, M. D. Partlan, S. Wang, C. P. McParland, F. S. Bieser, J. Romanski, Sebastiano Albergo, K.L. Wolf, Cristina Tuve, V. Lindenstruth, R. P. Scharenberg, H. S. Matis, Y. Choi, Y. Shao, J. L. Romero, Wolfgang Müller, and J. C. Kintner
- Subjects
Physics ,Nuclear and High Energy Physics ,Phase transition ,Fission ,Critical phenomena ,Nuclear Theory ,Nuclear physics ,Excited state ,Atomic physics ,Multiplicity (chemistry) ,Nuclear Experiment ,Nucleon ,Critical exponent ,Excitation - Abstract
Multifragmentation MF results from 1A GeV Au on C have been compared with the Copenhagen statistical multifragmentation model ~SMM!. The complete charge, mass, and momentum reconstruction of the Au projectile was used to identify high momentum ejectiles leaving an excited remnant of mass A, charge Z, and excitation energy E* which subsequently multifragments. Measurement of the magnitude and multiplicity ~energy! dependence of the initial free volume and the breakup volume determines the variable volume parametrization of SMM. Very good agreement is obtained using SMM with the standard values of the SMM parameters. A large number of observables, including the fragment charge yield distributions, fragment multiplicity distributions, caloric curve, critical exponents, and the critical scaling function are explored in this comparison. The two stage structure of SMM is used to determine the effect of cooling of the primary hot fragments. Average fragment yields with Z>3 are essentially unaffected when the excitation energy is 170 the effective latent heat approaches zero. Thus for heavier systems this transition can be identified as a continuous thermal phase transition where a large nucleus breaks up into a number of smaller nuclei with only a minimal release of constituent nucleons. Z
- Published
- 2001