151. Modeling ultrasoft-particle media
- Author
-
Nezamabadi, Saeid, Radjai, Farhang, Averseng, Julien, Delenne, Jean-Yves, Laboratoire de Mécanique et Génie Civil ( LMGC ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Physique et Mécanique des Milieux Divisés ( PMMD ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Multiscale Materials Science for Energy and Environment ( MSE2 ), Massachusetts Institute of Technology ( MIT ) -Centre National de la Recherche Scientifique ( CNRS ), Structures Innovantes, Géomatériaux, ECOconstruction ( SIGECO ), Ingénierie des Agro-polymères et Technologies Émergentes ( IATE ), Centre de Coopération Internationale en Recherche Agronomique pour le Développement ( CIRAD ) -Université de Montpellier ( UM ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Institut national d’études supérieures agronomiques de Montpellier ( Montpellier SupAgro ) -Institut National de la Recherche Agronomique ( INRA ) -Centre international d'études supérieures en sciences agronomiques ( Montpellier SupAgro ), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Physique et Mécanique des Milieux Divisés (PMMD), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Multiscale Material Science for Energy and Environment (MSE 2), Massachusetts Institute of Technology (MIT), Structures Innovantes, Géomatériaux, ECOconstruction (SIGECO), Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)
- Subjects
[ SPI.MECA.MEMA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Mécanique des matériaux ,Mechanics of materials - Abstract
Soft-particle materials are common in chemical, pharmaceutical and agro-alimentary industries. Some examples of these materials are vesicles, microgels and many biomaterials. These soft-particle materials are composed of well-defined particles that can undergo large deformations without rupture. In this respect, they differ from hard-particle materials with their plastic behavior mainly governed by particle rearrangements and frictional sliding. Soft particles can reach high packing fractions by particle shape change and flow plastically due to sliding [1]. The compaction, volume change behavior under shearing and the properties of the resulting complex textures in soft packings above the random close packing state have basically remained unexplored due to the lack of proper numerical and experimental tools. In this work, we present a detailed investigation of the compaction process of 2D soft-particle assemblies by means of a new approach combining the Material Point Method (MPM) for particle deformations and the Contact Dynamics (CD) method for the treatment of frictional contacts between particles [2]. This approach is based on an implicit formalism of MPM. Each particle is discretized by a collection of material points. The information carried by the material points is projected onto a background mesh, where equations of motion are solved. The mesh solution is then used to update the material points. The implicit formulation allows for numerical stability and efficient coupling with implicit modeling of unilateral contacts and friction between the particles. We analyze the uniaxial compaction of a small stack of elastic particles and the relationship between particle shape change and the evolution of packing fraction; see Fig 1. We show that the packing fraction beyond the random close packing state is a logarithmic function of the compressive stress. Interestingly, the friction appears to enhance the compressive stress, which leads to higher particle shape change and hence higher packing fraction.
- Published
- 2015