1,149 results on '"Courbin, F."'
Search Results
152. Discovery of the Lensed Quasar System DES J0408-5354
- Author
-
Lin, H., Buckley-Geer, E., Agnello, A., Ostrovski, F., McMahon, R. G., Nord, B., Kuropatkin, N., Tucker, D. L., Treu, T., Chan, J. H. H., Suyu, S. H., Diehl, H. T., Collett, T., Gill, M. S. S., More, A., Amara, A., Auger, M. W., Courbin, F., Fassnacht, C. D., Frieman, J., Marshall, P. J., Meylan, G., Rusu, C. E., Abbott, T. M. C., Abdalla, F. B., Allam, S., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Crocce, M., D'Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P., Eifler, T. F., Finley, D. A., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Plazas, A. A., Romer, A. K., Sanchez, E., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., and Walker, A. R.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (i < 20) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects., Comment: 9 pages, 4 figures, submitted to ApJ Letters
- Published
- 2017
- Full Text
- View/download PDF
153. ASTErIsM - Application of topometric clustering algorithms in automatic galaxy detection and classification
- Author
-
Tramacere, A., Paraficz, D., Dubath, P., Kneib, J. -P., and Courbin, F.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present a study on galaxy detection and shape classification using topometric clustering algorithms. We first use the DBSCAN algorithm to extract, from CCD frames, groups of adjacent pixels with significant fluxes and we then apply the DENCLUE algorithm to separate the contributions of overlapping sources. The DENCLUE separation is based on the localization of pattern of local maxima, through an iterative algorithm which associates each pixel to the closest local maximum. Our main classification goal is to take apart elliptical from spiral galaxies. We introduce new sets of features derived from the computation of geometrical invariant moments of the pixel group shape and from the statistics of the spatial distribution of the DENCLUE local maxima patterns. Ellipticals are characterized by a single group of local maxima, related to the galaxy core, while spiral galaxies have additional ones related to segments of spiral arms. We use two different supervised ensemble classification algorithms, Random Forest, and Gradient Boosting. Using a sample of ~ 24000 galaxies taken from the Galaxy Zoo 2 main sample with spectroscopic redshifts, and we test our classification against the Galaxy Zoo 2 catalog. We find that features extracted from our pipeline give on average an accuracy of ~ 93%, when testing on a test set with a size of 20% of our full data set, with features deriving from the angular distribution of density attractor ranking at the top of the discrimination power., Comment: 20 pages, 13 Figures, 8 Tables, Accepted for publication in the Monthly Notices of the Royal Astronomical Society
- Published
- 2016
- Full Text
- View/download PDF
154. H0LiCOW V. New COSMOGRAIL time delays of HE0435-1223: $H_0$ to 3.8% precision from strong lensing in a flat $\Lambda$CDM model
- Author
-
Bonvin, V., Courbin, F., Suyu, S. H., Marshall, P. J., Rusu, C. E., Sluse, D., Tewes, M., Wong, K. C., Collett, T., Fassnacht, C. D., Treu, T., Auger, M. W., Hilbert, S., Koopmans, L. V. E., Meylan, G., Rumbaugh, N., Sonnenfeld, A., and Spiniello, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,85A40 ,J.2 - Abstract
We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply-imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE0435-1223 from 13-year light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modeling of the main deflectors and line of sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat $\Lambda$CDM with free matter and energy density, we find $H_0$ = 71.9 +2.4 -3.0 km/s/Mpc and $\Omega_{\Lambda}$ = 0.62 +0.24 -0.35 . This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The TDSL and Planck joint constraints are $H_0$ = 69.2 +1.4 -2.2 km/s/Mpc, $\Omega_{\Lambda}$ = 0.70 +0.01 -0.01 and $\Omega_k$ = 0.003 +0.004 -0.006 in open $\Lambda$CDM and $H_0$ = 79.0 +4.4 -4.2 km/s/Mpc, $\Omega_{de}$ = 0.77 +0.02 -0.03 and $w$ = -1.38 +0.14 -0.16 in flat $w$CDM. Combined with Planck and Baryon Acoustic Oscillation data, when relaxing the constraints on the numbers of relativistic species we find $N_{eff}$ = 3.34 +0.21 -0.21 and when relaxing the total mass of neutrinos we find 0.182 eV. In an open $w$CDM in combination with Planck and CMB lensing we find $H_0$ = 77.9 +5.0 -4.2 km/s/Mpc, $\Omega_{de}$ = 0.77 +0.03 -0.03, $\Omega_k$ = -0.003 +0.004 -0.004 and $w$ = -1.37 +0.18 -0.23., Comment: 19 pages, 7 figures, 4 tables. Accepted for publication in MNRAS. Light curves and simulated data can be downloaded at http://www.h0licow.org
- Published
- 2016
- Full Text
- View/download PDF
155. H0LiCOW II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE0435-1223
- Author
-
Sluse, D., Sonnenfeld, A., Rumbaugh, N., Rusu, C. E., Fassnacht, C. D., Treu, T., Suyu, S. H., Wong, K. C., Auger, M. W., Bonvin, V., Collett, T., Courbin, F., Hilbert, S., Koopmans, L. V. E., Marshall, P. J., Meylan, G., Spiniello, C., and Tewes, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of $H_0$ from the time-delay technique. We present the results of a systematic spectroscopic identification of the galaxies in the field of view of the lensed quasar HE0435-1223, using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 3 arcmin from the lens. We complement our catalog with literature data to gather redshifts up to 15 arcmin from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We confirm that the lens is a member of a small group that includes at least 12 galaxies, and find 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 12 arcsec of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution., Comment: Version revised to address referee's comments, submitted to MNRAS, 21 pages (incl. Appendix). Data associated to the paper available from the H0LICOW website www.h0licow.org
- Published
- 2016
- Full Text
- View/download PDF
156. H0LiCOW I. $H_0$ Lenses in COSMOGRAIL's Wellspring: Program Overview
- Author
-
Suyu, S. H., Bonvin, V., Courbin, F., Fassnacht, C. D., Rusu, C. E., Sluse, D., Treu, T., Wong, K. C., Auger, M. W., Ding, X., Hilbert, S., Marshall, P. J., Rumbaugh, N., Sonnenfeld, A., Tewes, M., Tihhonova, O., Agnello, A., Blandford, R. D., Chen, G. C. -F., Collett, T., Koopmans, L. V. E., Liao, K., Meylan, G., and Spiniello, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Strong gravitational lens systems with time delays between the multiple images allow measurements of time-delay distances, which are primarily sensitive to the Hubble constant that is key to probing dark energy, neutrino physics, and the spatial curvature of the Universe, as well as discovering new physics. We present H0LiCOW ($H_0$ Lenses in COSMOGRAIL's Wellspring), a program that aims to measure $H_0$ with $<3.5\%$ uncertainty from five lens systems (B1608+656, RXJ1131-1231, HE0435-1223, WFI2033-4723 and HE1104-1805). We have been acquiring (1) time delays through COSMOGRAIL and Very Large Array monitoring, (2) high-resolution Hubble Space Telescope imaging for the lens mass modeling, (3) wide-field imaging and spectroscopy to characterize the lens environment, and (4) moderate-resolution spectroscopy to obtain the stellar velocity dispersion of the lenses for mass modeling. In cosmological models with one-parameter extension to flat $\Lambda$CDM, we expect to measure $H_0$ to $<3.5\%$ in most models, spatial curvature $\Omega_{\rm k}$ to 0.004, $w$ to 0.14, and the effective number of neutrino species to 0.2 (1$\sigma$ uncertainties) when combined with current CMB experiments. These are, respectively, a factor of $\sim15$, $\sim2$, and $\sim1.5$ tighter than CMB alone. Our data set will further enable us to study the stellar initial mass function of the lens galaxies, and the co-evolution of supermassive black holes and their host galaxies. This program will provide a foundation for extracting cosmological distances from the hundreds of time-delay lenses that are expected to be discovered in current and future surveys., Comment: 16 pages, 3 figures, submitted to MNRAS and revised based on referee's comments
- Published
- 2016
- Full Text
- View/download PDF
157. The PCA Lens-Finder: application to CFHTLS
- Author
-
Paraficz, D., Courbin, F., Tramacere, A., Joseph, R., Metcalf, R. B., Kneib, J. -P., Dubath, P., Droz, D., Filleul, F., Ringeisen, D., and Schäfer, C.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the results of a new search for galaxy-scale strong lensing systems in CFHTLS Wide. Our lens-finding technique involves a preselection of potential lens galaxies, applying simple cuts in size and magnitude. We then perform a Principal Component Analysis of the galaxy images, ensuring a clean removal of the light profile. Lensed features are searched for in the residual images using the clustering topometric algorithm DBSCAN. We find 1098 lens candidates that we inspect visually, leading to a cleaned sample of 109 new lens candidates. Using realistic image simulations we estimate the completeness of our sample and show that it is independent of source surface brightness, Einstein ring size (image separation) or lens redshift. We compare the properties of our sample to previous lens searches in CFHTLS. Including the present search, the total number of lenses found in CFHTLS amounts to 678, which corresponds to ~4 lenses per square degree down to i=24.8. This is equivalent to ~ 60.000 lenses in total in a survey as wide as Euclid, but at the CFHTLS resolution and depth., Comment: 21 pages, 12 figures, accepted for publication on A&A
- Published
- 2016
- Full Text
- View/download PDF
158. Stellar classification from single-band imaging using machine learning
- Author
-
Kuntzer, T., Tewes, M., and Courbin, F.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Information on the spectral types of stars is of great interest in view of the exploitation of space-based imaging surveys. In this article, we investigate the classification of stars into spectral types using only the shape of their diffraction pattern in a single broad-band image. We propose a supervised machine learning approach to this endeavour, based on principal component analysis (PCA) for dimensionality reduction, followed by artificial neural networks (ANNs) estimating the spectral type. Our analysis is performed with image simulations mimicking the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) in the F606W and F814W bands, as well as the Euclid VIS imager. We first demonstrate this classification in a simple context, assuming perfect knowledge of the point spread function (PSF) model and the possibility of accurately generating mock training data for the machine learning. We then analyse its performance in a fully data-driven situation, in which the training would be performed with a limited subset of bright stars from a survey, and an unknown PSF with spatial variations across the detector. We use simulations of main-sequence stars with flat distributions in spectral type and in signal-to-noise ratio, and classify these stars into 13 spectral subclasses, from O5 to M5. Under these conditions, the algorithm achieves a high success rate both for Euclid and HST images, with typical errors of half a spectral class. Although more detailed simulations would be needed to assess the performance of the algorithm on a specific survey, this shows that stellar classification from single-band images is well possible., Comment: 10 pages, 9 figures, 2 tables, accepted in A&A
- Published
- 2016
- Full Text
- View/download PDF
159. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects
- Author
-
Joseph, R., Courbin, F., and Starck, J. -L.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html.
- Published
- 2016
- Full Text
- View/download PDF
160. Firedec: a two-channel finite-resolution image deconvolution algorithm
- Author
-
Cantale, N., Courbin, F., Tewes, M., Jablonka., P., and Meylan, G.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present a two-channel deconvolution method that decomposes images into a parametric point-source channel and a pixelized extended-source channel. Based on the central idea of the deconvolution algorithm proposed by Magain, Courbin & Sohy (1998), the method aims at improving the resolution of the data rather than at completely removing the point spread function (PSF). Improvements over the original method include a better regularization of the pixel channel of the image, based on wavelet filtering and multiscale analysis, and a better controlled separation of the point source vs. the extended source. In addition, the method is able to simultaneously deconvolve many individual frames of the same object taken with different instruments under different PSF conditions. For this purpose, we introduce a general geometric transformation between individual images. This transformation allows the combination of the images without having to interpolate them. We illustrate the capability of our algorithm using real and simulated images with complex diffraction-limited PSF., Comment: Accepted in A&A. An application of the technique to real data is available in Cantale et al. http://arxiv.org/abs/1601.05192v1
- Published
- 2016
- Full Text
- View/download PDF
161. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses
- Author
-
Courbin, F, Bonvin, V, Buckley-Geer, E, Fassnacht, CD, Frieman, J, Lin, H, Marshall, PJ, Suyu, SH, Treu, T, Anguita, T, Motta, V, Meylan, G, Paic, E, Tewes, M, Agnello, A, Chao, DC-Y, Chijani, M, Gilman, D, Rojas, K, Williams, P, Hempel, A, Kim, S, Lachaume, R, Rabus, M, Abbott, TMC, Allam, S, Annis, J, Banerji, M, Bechtol, K, Benoit-Lévy, A, Brooks, D, Burke, DL, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, D’Andrea, CB, da Costa, LN, Davis, C, DePoy, DL, Desai, S, Flaugher, B, Fosalba, P, García-Bellido, J, Gaztanaga, E, Goldstein, DA, Gruen, D, Gruendl, RA, Gschwend, J, Gutierrez, G, Honscheid, K, James, DJ, Kuehn, K, Kuhlmann, S, Kuropatkin, N, Lahav, O, Lima, M, Maia, MAG, March, M, Marshall, JL, McMahon, RG, Menanteau, F, Miquel, R, Nord, B, Plazas, AA, Sanchez, E, Scarpine, V, Schindler, R, Schubnell, M, Sevilla-Noarbe, I, Smith, M, Soares-Santos, M, Sobreira, F, Suchyta, E, Tarle, G, Tucker, DL, Walker, AR, and Wester, W
- Subjects
Space Sciences ,Physical Sciences ,methods: data analysis ,gravitational lensing: strong ,cosmological parameters ,astro-ph.IM ,astro-ph.GA ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We present time-delay measurements for the new quadruple imaged quasar DES J04085354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J04085354: - "t(AB) = 112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system - "t(AD) = ± 12.8 days (8.2%) and - "t(BD) = 42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy.
- Published
- 2018
162. Evaluating the effect of stellar multiplicity on the PSF of space-based weak lensing surveys
- Author
-
Kuntzer, T., Courbin, F., and Meylan, G.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The next generation of space-based telescopes used for weak lensing surveys will require exquisite point spread function (PSF) determination. Previously negligible effects may become important in the reconstruction of the PSF, in part because of the improved spatial resolution. In this paper, we show that unresolved multiple star systems can affect the ellipticity and size of the PSF and that this effect is not cancelled even when using many stars in the reconstruction process. We estimate the error in the reconstruction of the PSF due to the binaries in the star sample both analytically and with image simulations for different PSFs and stellar populations. The simulations support our analytical finding that the error on the size of the PSF is a function of the multiple stars distribution and of the intrinsic value of the size of the PSF, i.e. if all stars were single. Similarly, the modification of each of the complex ellipticity components (e1,e2) depends on the distribution of multiple stars and on the intrinsic complex ellipticity. Using image simulations, we also show that the predicted error in the PSF shape is a theoretical limit that can be reached only if large number of stars (up to thousands) are used together to build the PSF at any desired spatial position. For a lower number of stars, the PSF reconstruction is worse. Finally, we compute the effect of binarity for different stellar magnitudes and show that bright stars alter the PSF size and ellipticity more than faint stars. This may affect the design of PSF calibration strategies and the choice of the related calibration fields., Comment: 10 pages, 6 figures, accepted in A&A
- Published
- 2015
- Full Text
- View/download PDF
163. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XV. Assessing the achievability and precision of time-delay measurements
- Author
-
Bonvin, V., Tewes, M., Courbin, F., Kuntzer, T., Sluse, D., and Meylan, G.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
COSMOGRAIL is a long-term photometric monitoring of gravitationally lensed QSOs aimed at implementing Refsdal's time-delay method to measure cosmological parameters, in particular H0. Given long and well sampled light curves of strongly lensed QSOs, time-delay measurements require numerical techniques whose quality must be assessed. To this end, and also in view of future monitoring programs or surveys such as the LSST, a blind signal processing competition named Time Delay Challenge 1 (TDC1) was held in 2014. The aim of the present paper, which is based on the simulated light curves from the TDC1, is double. First, we test the performance of the time-delay measurement techniques currently used in COSMOGRAIL. Second, we analyse the quantity and quality of the harvest of time delays obtained from the TDC1 simulations. To achieve these goals, we first discover time delays through a careful inspection of the light curves via a dedicated visual interface. Our measurement algorithms can then be applied to the data in an automated way. We show that our techniques have no significant biases, and yield adequate uncertainty estimates resulting in reduced chi2 values between 0.5 and 1.0. We provide estimates for the number and precision of time-delay measurements that can be expected from future time-delay monitoring campaigns as a function of the photometric signal-to-noise ratio and of the true time delay. We make our blind measurements on the TDC1 data publicly available, Comment: 11 pages, 8 figures, published in Astronomy & Astrophysics
- Published
- 2015
- Full Text
- View/download PDF
164. A Consistent Picture Emerges: A Compact X-ray Continuum Emission Region in the Gravitationally Lensed Quasar SDSS J0924+0219
- Author
-
MacLeod, Chelsea L., Morgan, Christopher, Mosquera, A., Kochanek, C., Tewes, M., Courbin, F., Meylan, G., Chen, B., Dai, X., and Chartas, G.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5x10^13 and 10^15 cm, and we find an upper limit of 10^15 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7 GM_BH/c^2 for a 2.8x10^8 M_sol black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 10^14 cm < r_1/2,UV < 3x10^15 cm. Finally, the optical size is significantly larger, by 1.5*sigma, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk., Comment: Replaced with accepted version to ApJ
- Published
- 2015
- Full Text
- View/download PDF
165. Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3
- Author
-
Rivera, A. B., primary, Morgan, C. W., additional, Florence, S. M., additional, Kniezewski, K., additional, Millon, M., additional, Courbin, F., additional, Dahm, S. E., additional, Vrba, F. J., additional, Tilleman, T. M., additional, Cornachione, M. A., additional, Asfandiyarov, I. M., additional, Ehgamberdiev, S. A., additional, and Burkhonov, O. A., additional
- Published
- 2024
- Full Text
- View/download PDF
166. Euclid: Improving the efficiency of weak lensing shear bias calibration
- Author
-
Jansen, H., primary, Tewes, M., additional, Schrabback, T., additional, Aghanim, N., additional, Amara, A., additional, Andreon, S., additional, Auricchio, N., additional, Baldi, M., additional, Branchini, E., additional, Brescia, M., additional, Brinchmann, J., additional, Camera, S., additional, Capobianco, V., additional, Carbone, C., additional, Cardone, V. F., additional, Carretero, J., additional, Casas, S., additional, Castellano, M., additional, Cavuoti, S., additional, Cimatti, A., additional, Congedo, G., additional, Conversi, L., additional, Copin, Y., additional, Corcione, L., additional, Courbin, F., additional, Courtois, H. M., additional, Da Silva, A., additional, Degaudenzi, H., additional, Dinis, J., additional, Dubath, F., additional, Dupac, X., additional, Farina, M., additional, Farrens, S., additional, Ferriol, S., additional, Frailis, M., additional, Franceschi, E., additional, Fumana, M., additional, Galeotta, S., additional, Gillis, B., additional, Giocoli, C., additional, Grazian, A., additional, Grupp, F., additional, Haugan, S. V. H., additional, Hoekstra, H., additional, Holmes, W., additional, Hormuth, F., additional, Hornstrup, A., additional, Hudelot, P., additional, Jahnke, K., additional, Joachimi, B., additional, Kermiche, S., additional, Kiessling, A., additional, Kilbinger, M., additional, Kitching, T., additional, Kubik, B., additional, Kurki-Suonio, H., additional, Ligori, S., additional, Lilje, P. B., additional, Lindholm, V., additional, Lloro, I., additional, Maiorano, E., additional, Mansutti, O., additional, Marggraf, O., additional, Markovic, K., additional, Martinet, N., additional, Marulli, F., additional, Massey, R., additional, Medinaceli, E., additional, Mei, S., additional, Melchior, M., additional, Mellier, Y., additional, Meneghetti, M., additional, Merlin, E., additional, Meylan, G., additional, Miller, L., additional, Moresco, M., additional, Moscardini, L., additional, Munari, E., additional, Nakajima, R., additional, Niemi, S.-M., additional, Padilla, C., additional, Paltani, S., additional, Pasian, F., additional, Pedersen, K., additional, Pettorino, V., additional, Pires, S., additional, Polenta, G., additional, Poncet, M., additional, Raison, F., additional, Renzi, A., additional, Rhodes, J., additional, Riccio, G., additional, Romelli, E., additional, Roncarelli, M., additional, Rossetti, E., additional, Saglia, R., additional, Sapone, D., additional, Sartoris, B., additional, Schneider, P., additional, Secroun, A., additional, Seidel, G., additional, Serrano, S., additional, Sirignano, C., additional, Sirri, G., additional, Skottfelt, J., additional, Stanco, L., additional, Tallada-Crespí, P., additional, Tereno, I., additional, Toledo-Moreo, R., additional, Torradeflot, F., additional, Tutusaus, I., additional, Valentijn, E. A., additional, Valenziano, L., additional, Vassallo, T., additional, Veropalumbo, A., additional, Wang, Y., additional, Weller, J., additional, Zamorani, G., additional, Zoubian, J., additional, Colodro-Conde, C., additional, and Scottez, V., additional
- Published
- 2024
- Full Text
- View/download PDF
167. Identifying the reddest high-redshift galaxies in the Euclid Deep Fields with gradient-boosted trees
- Author
-
Signor, T., primary, Rodighiero, G., additional, Bisigello, L., additional, Bolzonella, M., additional, Caputi, K. I., additional, Daddi, E., additional, De Lucia, G., additional, Enia, A., additional, Gabarra, L., additional, Gruppioni, C., additional, Humphrey, A., additional, La Franca, F., additional, Mancini, C., additional, Pozzetti, L., additional, Serjeant, S., additional, Spinoglio, L., additional, van Mierlo, S. E., additional, Andreon, S., additional, Auricchio, N., additional, Baldi, M., additional, Bardelli, S., additional, Battaglia, P., additional, Bender, R., additional, Bodendorf, C., additional, Bonino, D., additional, Branchini, E., additional, Brescia, M., additional, Brinchmann, J., additional, Camera, S., additional, Capobianco, V., additional, Carbone, C., additional, Carretero, J., additional, Casas, S., additional, Castellano, M., additional, Cavuoti, S., additional, Cimatti, A., additional, Cledassou, R., additional, Congedo, G., additional, Conselice, C. J., additional, Conversi, L., additional, Copin, Y., additional, Corcione, L., additional, Courbin, F., additional, Courtois, H. M., additional, Da Silva, A., additional, Degaudenzi, H., additional, Di Giorgio, A. M., additional, Dinis, J., additional, Dubath, F., additional, Dupac, X., additional, Dusino, S., additional, Ealet, A., additional, Farina, M., additional, Farrens, S., additional, Ferriol, S., additional, Fotopoulou, S., additional, Franceschi, E., additional, Galeotta, S., additional, Garilli, B., additional, Gillard, W., additional, Gillis, B., additional, Giocoli, C., additional, Grazian, A., additional, Grupp, F., additional, Guzzo, L., additional, Haugan, S. V. H., additional, Hook, I., additional, Hormuth, F., additional, Hornstrup, A., additional, Jahnke, K., additional, Kümmel, M., additional, Kermiche, S., additional, Kiessling, A., additional, Kilbinger, M., additional, Kitching, T., additional, Kurki-Suonio, H., additional, Ligori, S., additional, Lilje, P. B., additional, Lindholm, V., additional, Lloro, I., additional, Maino, D., additional, Maiorano, E., additional, Mansutti, O., additional, Marggraf, O., additional, Martinet, N., additional, Marulli, F., additional, Massey, R., additional, Medinaceli, E., additional, Melchior, M., additional, Mellier, Y., additional, Meneghetti, M., additional, Merlin, E., additional, Moresco, M., additional, Moscardini, L., additional, Munari, E., additional, Nichol, R. C., additional, Niemi, S.-M., additional, Padilla, C., additional, Paltani, S., additional, Pasian, F., additional, Pedersen, K., additional, Pettorino, V., additional, Pires, S., additional, Polenta, G., additional, Poncet, M., additional, Popa, L. A., additional, Raison, F., additional, Renzi, A., additional, Rhodes, J., additional, Riccio, G., additional, Romelli, E., additional, Roncarelli, M., additional, Rossetti, E., additional, Saglia, R., additional, Sapone, D., additional, Sartoris, B., additional, Schneider, P., additional, Schrabback, T., additional, Secroun, A., additional, Seidel, G., additional, Serrano, S., additional, Sirignano, C., additional, Sirri, G., additional, Stanco, L., additional, Surace, C., additional, Tallada-Crespí, P., additional, Teplitz, H. I., additional, Tereno, I., additional, Toledo-Moreo, R., additional, Torradeflot, F., additional, Tutusaus, I., additional, Valentijn, E. A., additional, Vassallo, T., additional, Veropalumbo, A., additional, Wang, Y., additional, Weller, J., additional, Williams, O. R., additional, Zoubian, J., additional, Zucca, E., additional, Burigana, C., additional, and Scottez, V., additional
- Published
- 2024
- Full Text
- View/download PDF
168. Euclid: The search for primordial features
- Author
-
Ballardini, M., primary, Akrami, Y., additional, Finelli, F., additional, Karagiannis, D., additional, Li, B., additional, Li, Y., additional, Sakr, Z., additional, Sapone, D., additional, Achúcarro, A., additional, Baldi, M., additional, Bartolo, N., additional, Cañas-Herrera, G., additional, Casas, S., additional, Murgia, R., additional, Winther, H.-A., additional, Viel, M., additional, Andrews, A., additional, Jasche, J., additional, Lavaux, G., additional, Hazra, D. K., additional, Paoletti, D., additional, Valiviita, J., additional, Amara, A., additional, Andreon, S., additional, Auricchio, N., additional, Battaglia, P., additional, Bonino, D., additional, Branchini, E., additional, Brescia, M., additional, Brinchmann, J., additional, Camera, S., additional, Capobianco, V., additional, Carbone, C., additional, Carretero, J., additional, Castellano, M., additional, Cavuoti, S., additional, Cimatti, A., additional, Congedo, G., additional, Conversi, L., additional, Copin, Y., additional, Corcione, L., additional, Courbin, F., additional, Courtois, H. M., additional, Da Silva, A., additional, Degaudenzi, H., additional, Dubath, F., additional, Dupac, X., additional, Farina, M., additional, Farrens, S., additional, Frailis, M., additional, Franceschi, E., additional, Fumana, M., additional, Galeotta, S., additional, Gillis, B., additional, Giocoli, C., additional, Grazian, A., additional, Grupp, F., additional, Haugan, S. V. H., additional, Holmes, W., additional, Hormuth, F., additional, Hornstrup, A., additional, Hudelot, P., additional, Jahnke, K., additional, Kermiche, S., additional, Kiessling, A., additional, Kunz, M., additional, Kurki-Suonio, H., additional, Lilje, P. B., additional, Lindholm, V., additional, Lloro, I., additional, Maiorano, E., additional, Mansutti, O., additional, Marggraf, O., additional, Martinet, N., additional, Marulli, F., additional, Massey, R., additional, Medinaceli, E., additional, Mei, S., additional, Mellier, Y., additional, Meneghetti, M., additional, Merlin, E., additional, Meylan, G., additional, Moresco, M., additional, Moscardini, L., additional, Munari, E., additional, Niemi, S.-M., additional, Padilla, C., additional, Paltani, S., additional, Pasian, F., additional, Pedersen, K., additional, Percival, W. J., additional, Pettorino, V., additional, Pires, S., additional, Polenta, G., additional, Poncet, M., additional, Popa, L. A., additional, Pozzetti, L., additional, Raison, F., additional, Renzi, A., additional, Rhodes, J., additional, Riccio, G., additional, Romelli, E., additional, Roncarelli, M., additional, Saglia, R., additional, Sartoris, B., additional, Schrabback, T., additional, Secroun, A., additional, Seidel, G., additional, Serrano, S., additional, Sirignano, C., additional, Sirri, G., additional, Stanco, L., additional, Starck, J.-L., additional, Surace, C., additional, Tallada-Crespí, P., additional, Taylor, A. N., additional, Tereno, I., additional, Toledo-Moreo, R., additional, Torradeflot, F., additional, Tutusaus, I., additional, Valentijn, E. A., additional, Valenziano, L., additional, Vassallo, T., additional, Veropalumbo, A., additional, Wang, Y., additional, Weller, J., additional, Zamorani, G., additional, Zoubian, J., additional, and Scottez, V., additional
- Published
- 2024
- Full Text
- View/download PDF
169. Polarimetry of the Lyalpha envelope of the radio-quiet quasar SDSS J124020.91+145535.6
- Author
-
North, P., primary, Hayes, M., additional, Millon, M., additional, Verhamme, A., additional, Trebitsch, M., additional, Blaizot, J., additional, Courbin, F., additional, and Chelouche, D., additional
- Published
- 2024
- Full Text
- View/download PDF
170. A PCA-based automated finder for galaxy-scale strong lenses
- Author
-
Joseph, R., Courbin, F., Metcalf, R. B., Giocoli, C., Hartley, P., Jackson, N., Bellagamba, F., Kneib, J. -P., Koopmans, L., Lemson, G., Meneghetti, M., Meylan, G., Petkova, M., and Pires, S.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an algorithm using Principal Component Analysis (PCA) to subtract galaxies from imaging data, and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimized to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centered on the lens galaxy center. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity and elongation. We apply the two methods to a sample of simulated Einstein rings, as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinates transform allows us to reach a completeness of 90% and a purity of 86%, as soon as the signal-to-noise integrated in the ring is higher than 30, and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.
- Published
- 2014
- Full Text
- View/download PDF
171. Euclid preparation XLI. Galaxy power spectrum modelling in real space
- Author
-
Pezzotta, A., Moretti, C., Zennaro, M., Moradinezhad Dizgah, A., Crocce, M., Sefusatti, E., Ferrero, I., Pardede, K., Eggemeier, A., Barreira, A., Angulo, R. E., Marinucci, M., Camacho Quevedo, B., de la Torre, S., Alkhanishvili, D., Biagetti, M., Breton, M. -a., Castorina, E., D'Amico, G., Desjacques, V., Guidi, M., Karcher, M., Oddo, A., Pellejero Ibanez, M., Porciani, C., Pugno, A., Salvalaggio, J., Sarpa, E., Veropalumbo, A., Vlah, Z., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hormuth, F., Hornstrup, A., Jahnke, K., Joachimi, B., Keihaenen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -m., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Pollack, J. E., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespi, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bozzo, E., Burigana, C., Colodro-Conde, C., Di Ferdinando, D., Mainetti, G., Martinelli, M., Mauri, N., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Bernardeau, F., Blanchard, A., Borgani, S., Bruton, S., Cabanac, R., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Canas-Herrera, G., Chambers, K. C., Contarini, S., Cooray, A. R., Coupon, J., Davini, S., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Diaz-Sanchez, A., Escartin Vigo, J. A., Escoffier, S., Ferreira, P. G., Finelli, F., Gabarra, L., Ganga, K., Garcia-Bellido, J., Giacomini, F., Gozaliasl, G., Hall, A., Ilic, S., Joudaki, S., Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Pourtsidou, A., Poentinen, M., Risso, I., Rocci, P. -f., Sahlén, Martin, Sanchez, A. G., Schneider, A., Sereno, M., Simon, P., Spurio Mancini, A., Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., Vielzeuf, P., Pezzotta, A., Moretti, C., Zennaro, M., Moradinezhad Dizgah, A., Crocce, M., Sefusatti, E., Ferrero, I., Pardede, K., Eggemeier, A., Barreira, A., Angulo, R. E., Marinucci, M., Camacho Quevedo, B., de la Torre, S., Alkhanishvili, D., Biagetti, M., Breton, M. -a., Castorina, E., D'Amico, G., Desjacques, V., Guidi, M., Karcher, M., Oddo, A., Pellejero Ibanez, M., Porciani, C., Pugno, A., Salvalaggio, J., Sarpa, E., Veropalumbo, A., Vlah, Z., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hormuth, F., Hornstrup, A., Jahnke, K., Joachimi, B., Keihaenen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -m., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Pollack, J. E., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespi, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bozzo, E., Burigana, C., Colodro-Conde, C., Di Ferdinando, D., Mainetti, G., Martinelli, M., Mauri, N., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Bernardeau, F., Blanchard, A., Borgani, S., Bruton, S., Cabanac, R., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Canas-Herrera, G., Chambers, K. C., Contarini, S., Cooray, A. R., Coupon, J., Davini, S., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Diaz-Sanchez, A., Escartin Vigo, J. A., Escoffier, S., Ferreira, P. G., Finelli, F., Gabarra, L., Ganga, K., Garcia-Bellido, J., Giacomini, F., Gozaliasl, G., Hall, A., Ilic, S., Joudaki, S., Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Pourtsidou, A., Poentinen, M., Risso, I., Rocci, P. -f., Sahlén, Martin, Sanchez, A. G., Schneider, A., Sereno, M., Simon, P., Spurio Mancini, A., Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Abstract
We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with H alpha galaxies leading to catalogues of millions of objects within a volume of about 58 h(-3) Gpc(3). Our analysis suggests that both models can be used to provide a robust inference of the parameters (h, omega c) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion - which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution - can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of k(max) = 0.45 h Mpc(-1), and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, omega c) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales
- Published
- 2024
- Full Text
- View/download PDF
172. Euclid: Validation of the MontePython forecasting tools
- Author
-
Casas, S., Lesgourgues, J., Schöneberg, N., M., Sabarish V., Rathmann, L., Doerenkamp, M., Archidiacono, M., Bellini, E., Clesse, S., Frusciante, N., Martinelli, M., Pace, F., Sapone, D., Sakr, Z., Blanchard, A., Brinckmann, T., Camera, S., Carbone, C., Ilić, S., Markovic, K., Pettorino, V., Tutusaus, I., Aghanim, N., Amara, A., Amendola, L., Auricchio, N., Baldi, M., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Capobianco, V., Cardone, V. F., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Cropper, M., Degaudenzi, H., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farrens, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hormuth, F., Hornstrup, A., Jahnke, K., Kümmel, M., Kiessling, A., Kilbinger, M., Kitching, T., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Surace, C., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Scottez, V., Veropalumbo, A., Casas, S., Lesgourgues, J., Schöneberg, N., M., Sabarish V., Rathmann, L., Doerenkamp, M., Archidiacono, M., Bellini, E., Clesse, S., Frusciante, N., Martinelli, M., Pace, F., Sapone, D., Sakr, Z., Blanchard, A., Brinckmann, T., Camera, S., Carbone, C., Ilić, S., Markovic, K., Pettorino, V., Tutusaus, I., Aghanim, N., Amara, A., Amendola, L., Auricchio, N., Baldi, M., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Capobianco, V., Cardone, V. F., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Cropper, M., Degaudenzi, H., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farrens, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hormuth, F., Hornstrup, A., Jahnke, K., Kümmel, M., Kiessling, A., Kilbinger, M., Kitching, T., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Surace, C., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Scottez, V., and Veropalumbo, A.
- Abstract
The Euclid mission of the European Space Agency will perform a survey of weak lensing cosmic shear and galaxy clustering in order to constrain cosmological models and fundamental physics. We expand and adjust the mock Euclid likelihoods of the MontePython software in order to match the exact recipes used in previous Euclid Fisher matrix forecasts for several probes: weak lensing cosmic shear, photometric galaxy clustering, the cross-correlation between the latter observables, and spectroscopic galaxy clustering. We also establish which precision settings are required when running the Einstein-Boltzmann solvers CLASS and CAMB in the context of Euclid. For the minimal cosmological model, extended to include dynamical dark energy, we perform Fisher matrix forecasts based directly on a numerical evaluation of second derivatives of the likelihood with respect to model parameters. We compare our results with those of other forecasting methods and tools. We show that such MontePython forecasts agree very well with previous Fisher forecasts published by the Euclid Collaboration, and also, with new forecasts produced by the CosmicFish code, now interfaced directly with the two Einstein-Boltzmann solvers CAMB and CLASS. Moreover, to establish the validity of the Gaussian approximation, we show that the Fisher matrix marginal error contours coincide with the credible regions obtained when running Monte Carlo Markov Chains with MontePython while using the exact same mock likelihoods. The new Euclid forecast pipelines presented here are ready for use with additional cosmological parameters, in order to explore extended cosmological models.
- Published
- 2024
173. Euclid preparation. Measuring detailed galaxy morphologies for Euclid with Machine Learning
- Author
-
Euclid Collaboration, Aussel, B., Kruk, S., Walmsley, M., Huertas-Company, M., Castellano, M., Conselice, C. J., Veneri, M. Delli, Sánchez, H. Domínguez, Duc, P. -A., Kuchner, U., La Marca, A., Margalef-Bentabol, B., Marleau, F. R., Stevens, G., Toba, Y., Tortora, C., Wang, L., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Colodro-Conde, C., Di Ferdinando, D., Farinelli, R., Graciá-Carpio, J., Mainetti, G., Marcin, S., Mauri, N., Neissner, C., Nucita, A. A., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Borgani, S., Borlaff, A. S., Bretonnière, H., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Cañas-Herrera, G., Chambers, K. C., Coupon, J., Cucciati, O., Davini, S., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Díaz-Sánchez, A., Vigo, J. A. Escartin, Escoffier, S., Ferrero, I., Finelli, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., George, K., Giacomini, F., Gozaliasl, G., Gregorio, A., Guinet, D., Hall, A., Hildebrandt, H., Munoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maturi, M., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Walton, Nicholas A., Peel, A., Pezzotta, A., Popa, V., Porciani, C., Potter, D., Pöntinen, M., Reimberg, P., Rocci, P. -F., Sánchez, A. G., Schneider, A., Sefusatti, E., Sereno, M., Simon, P., Mancini, A. Spurio, Stanford, S. A., Steinwagner, J., Testera, G., Tewes, M., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Zinchenko, I. A., Euclid Collaboration, Aussel, B., Kruk, S., Walmsley, M., Huertas-Company, M., Castellano, M., Conselice, C. J., Veneri, M. Delli, Sánchez, H. Domínguez, Duc, P. -A., Kuchner, U., La Marca, A., Margalef-Bentabol, B., Marleau, F. R., Stevens, G., Toba, Y., Tortora, C., Wang, L., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Colodro-Conde, C., Di Ferdinando, D., Farinelli, R., Graciá-Carpio, J., Mainetti, G., Marcin, S., Mauri, N., Neissner, C., Nucita, A. A., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Borgani, S., Borlaff, A. S., Bretonnière, H., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Cañas-Herrera, G., Chambers, K. C., Coupon, J., Cucciati, O., Davini, S., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Díaz-Sánchez, A., Vigo, J. A. Escartin, Escoffier, S., Ferrero, I., Finelli, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., George, K., Giacomini, F., Gozaliasl, G., Gregorio, A., Guinet, D., Hall, A., Hildebrandt, H., Munoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maturi, M., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Walton, Nicholas A., Peel, A., Pezzotta, A., Popa, V., Porciani, C., Potter, D., Pöntinen, M., Reimberg, P., Rocci, P. -F., Sánchez, A. G., Schneider, A., Sefusatti, E., Sereno, M., Simon, P., Mancini, A. Spurio, Stanford, S. A., Steinwagner, J., Testera, G., Tewes, M., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Zinchenko, I. A.
- Abstract
The Euclid mission is expected to image millions of galaxies with high resolution, providing an extensive dataset to study galaxy evolution. We investigate the application of deep learning to predict the detailed morphologies of galaxies in Euclid using Zoobot a convolutional neural network pretrained with 450000 galaxies from the Galaxy Zoo project. We adapted Zoobot for emulated Euclid images, generated based on Hubble Space Telescope COSMOS images, and with labels provided by volunteers in the Galaxy Zoo: Hubble project. We demonstrate that the trained Zoobot model successfully measures detailed morphology for emulated Euclid images. It effectively predicts whether a galaxy has features and identifies and characterises various features such as spiral arms, clumps, bars, disks, and central bulges. When compared to volunteer classifications Zoobot achieves mean vote fraction deviations of less than 12% and an accuracy above 91% for the confident volunteer classifications across most morphology types. However, the performance varies depending on the specific morphological class. For the global classes such as disk or smooth galaxies, the mean deviations are less than 10%, with only 1000 training galaxies necessary to reach this performance. For more detailed structures and complex tasks like detecting and counting spiral arms or clumps, the deviations are slightly higher, around 12% with 60000 galaxies used for training. In order to enhance the performance on complex morphologies, we anticipate that a larger pool of labelled galaxies is needed, which could be obtained using crowdsourcing. Finally, our findings imply that the model can be effectively adapted to new morphological labels. We demonstrate this adaptability by applying Zoobot to peculiar galaxies. In summary, our trained Zoobot CNN can readily predict morphological catalogues for Euclid images., Comment: 27 pages, 26 figures, 5 tables, submitted to A&A
- Published
- 2024
174. Euclid preparation. The Near-IR Background Dipole Experiment with Euclid
- Author
-
Euclid Collaboration, Kashlinsky, A., Arendt, R. G., Ashby, M. L. N., Atrio-Barandela, F., Scaramella, R., Strauss, M. A., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., McCracken, H. J., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bozzo, E., Burigana, C., Colodro-Conde, C., Di Ferdinando, D., Fabbian, G., Farinelli, R., Graciá-Carpio, J., Mainetti, G., Martinelli, M., Mauri, N., Neissner, C., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Blanchard, A., Borgani, S., Borlaff, A. S., Bruton, S., Cabanac, R., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., {n}as-Herrera, G. Ca\, Chambers, K. C., Contarini, S., Coupon, J., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Díaz-Sánchez, A., Vigo, J. A. Escartin, Ferrero, I., Finelli, F., Gabarra, L., García-Bellido, J., Gautard, V., Gaztanaga, E., George, K., Giacomini, F., Gozaliasl, G., Gregorio, A., Hall, A., Hildebrandt, H., Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Pöntinen, M., Rocci, P. -F., Sahlén, M., Schneider, A., Sefusatti, E., Sereno, M., Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., Hasinger, G., Euclid Collaboration, Kashlinsky, A., Arendt, R. G., Ashby, M. L. N., Atrio-Barandela, F., Scaramella, R., Strauss, M. A., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., McCracken, H. J., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bozzo, E., Burigana, C., Colodro-Conde, C., Di Ferdinando, D., Fabbian, G., Farinelli, R., Graciá-Carpio, J., Mainetti, G., Martinelli, M., Mauri, N., Neissner, C., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Baccigalupi, C., Ballardini, M., Blanchard, A., Borgani, S., Borlaff, A. S., Bruton, S., Cabanac, R., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., {n}as-Herrera, G. Ca\, Chambers, K. C., Contarini, S., Coupon, J., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Díaz-Sánchez, A., Vigo, J. A. Escartin, Ferrero, I., Finelli, F., Gabarra, L., García-Bellido, J., Gautard, V., Gaztanaga, E., George, K., Giacomini, F., Gozaliasl, G., Gregorio, A., Hall, A., Hildebrandt, H., Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Pöntinen, M., Rocci, P. -F., Sahlén, M., Schneider, A., Sefusatti, E., Sereno, M., Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., and Hasinger, G.
- Abstract
Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for the extinction correction dipole using the method newly developed here achieving total separation, accounting for the Earth's orbital motion and other systematic effects. (Abridged), Comment: Euclid Key Project paper, A&A submitted
- Published
- 2024
175. Euclid preparation: TBD. The pre-launch Science Ground Segment simulation framework
- Author
-
Euclid Collaboration, Serrano, S., Hudelot, P., Seidel, G., Pollack, J. E., Jullo, E., Torradeflot, F., Benielli, D., Fahed, R., Auphan, T., Carretero, J., Aussel, H., Casenove, P., Castander, F. J., Davies, J. E., Fourmanoit, N., Huot, S., Kara, A., Keihanen, E., Kermiche, S., Okumura, K., Zoubian, J., Ealet, A., Boucaud, A., Bretonniere, H., Casas, R., Clement, B., Duncan, C. A. J., George, K., Kiiveri, K., Kurki-Suonio, H., Kummel, M., Laugier, D., Mainetti, G., Mohr, J. J., Montoro, A., Neissner, C., Schirmer, M., Tallada-Crespi, P., Tonello, N., Venhola, A., Verderi, A., Zacchei, A., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Azzollini, R., Baldi, M., Bardelli, S., Basset, A., Battaglia, P., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Candini, G. P., Capobianco, V., Carbone, C., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Franzetti, P., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Joachimi, B., Kiessling, A., Kitching, T., Kohley, R., Kunz, M., Boulc'h, Q. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. -M., Nutma, T., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Sauvage, M., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Starck, J. -L., Taylor, A. N, Teplitz, H., Tereno, I., Toledo-Moreo, R., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Farinelli, R., Gracia-Carpio, J., Liebing, P., Marcin, S., Mauri, N., Scottez, V., Tenti, M., Akrami, Y., Allevato, V., Baccigalupi, C., Ballardini, M., Bernardeau, F., Blanchard, A., Borgani, S., Borlaff, A. S., Bruton, S., Burigana, C., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Canas-Herrera, G., Chambers, K. C., Cooray, A. R., Coupon, J., Crocce, M., Davini, S., de la Torre, S., De Lucia, G., Desai, S., Desprez, G., Diaz-Sanchez, A., Di Domizio, S., Dole, H., Vigo, J. A. Escartin, Escoffier, S., Ferrero, I., Finelli, F., Gabarra, L., Ganga, K., Garcia-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Gregorio, A., Hildebrandt, H., Huertas-Company, M., Ilbert, O., Munoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Morris, P., Nadathur, S., Nucita, A. A., Pontinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Rusholme, B., Sakr, Z., Sanchez, A. G., Schneider, A., Sereno, M., Shulevski, A., Simon, P., Mancini, A. Spurio, Stadel, J., Steinwagner, J., Tewes, M., Teyssier, R., Toft, S., Tucci, M., Valiviita, J., Viel, M., Zinchenko, I. A., Euclid Collaboration, Serrano, S., Hudelot, P., Seidel, G., Pollack, J. E., Jullo, E., Torradeflot, F., Benielli, D., Fahed, R., Auphan, T., Carretero, J., Aussel, H., Casenove, P., Castander, F. J., Davies, J. E., Fourmanoit, N., Huot, S., Kara, A., Keihanen, E., Kermiche, S., Okumura, K., Zoubian, J., Ealet, A., Boucaud, A., Bretonniere, H., Casas, R., Clement, B., Duncan, C. A. J., George, K., Kiiveri, K., Kurki-Suonio, H., Kummel, M., Laugier, D., Mainetti, G., Mohr, J. J., Montoro, A., Neissner, C., Schirmer, M., Tallada-Crespi, P., Tonello, N., Venhola, A., Verderi, A., Zacchei, A., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Azzollini, R., Baldi, M., Bardelli, S., Basset, A., Battaglia, P., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Candini, G. P., Capobianco, V., Carbone, C., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Franzetti, P., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Joachimi, B., Kiessling, A., Kitching, T., Kohley, R., Kunz, M., Boulc'h, Q. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. -M., Nutma, T., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Sauvage, M., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Starck, J. -L., Taylor, A. N, Teplitz, H., Tereno, I., Toledo-Moreo, R., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Farinelli, R., Gracia-Carpio, J., Liebing, P., Marcin, S., Mauri, N., Scottez, V., Tenti, M., Akrami, Y., Allevato, V., Baccigalupi, C., Ballardini, M., Bernardeau, F., Blanchard, A., Borgani, S., Borlaff, A. S., Bruton, S., Burigana, C., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Canas-Herrera, G., Chambers, K. C., Cooray, A. R., Coupon, J., Crocce, M., Davini, S., de la Torre, S., De Lucia, G., Desai, S., Desprez, G., Diaz-Sanchez, A., Di Domizio, S., Dole, H., Vigo, J. A. Escartin, Escoffier, S., Ferrero, I., Finelli, F., Gabarra, L., Ganga, K., Garcia-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Gregorio, A., Hildebrandt, H., Huertas-Company, M., Ilbert, O., Munoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Morris, P., Nadathur, S., Nucita, A. A., Pontinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Rusholme, B., Sakr, Z., Sanchez, A. G., Schneider, A., Sereno, M., Shulevski, A., Simon, P., Mancini, A. Spurio, Stadel, J., Steinwagner, J., Tewes, M., Teyssier, R., Toft, S., Tucci, M., Valiviita, J., Viel, M., and Zinchenko, I. A.
- Abstract
The European Space Agency's Euclid mission is one of the upcoming generation of large-scale cosmology surveys, which will map the large-scale structure in the Universe with unprecedented precision. The development and validation of the SGS pipeline requires state-of-the-art simulations with a high level of complexity and accuracy that include subtle instrumental features not accounted for previously as well as faster algorithms for the large-scale production of the expected Euclid data products. In this paper, we present the Euclid SGS simulation framework as applied in a large-scale end-to-end simulation exercise named Science Challenge 8. Our simulation pipeline enables the swift production of detailed image simulations for the construction and validation of the Euclid mission during its qualification phase and will serve as a reference throughout operations. Our end-to-end simulation framework starts with the production of a large cosmological N-body & mock galaxy catalogue simulation. We perform a selection of galaxies down to I_E=26 and 28 mag, respectively, for a Euclid Wide Survey spanning 165 deg^2 and a 1 deg^2 Euclid Deep Survey. We build realistic stellar density catalogues containing Milky Way-like stars down to H<26. Using the latest instrumental models for both the Euclid instruments and spacecraft as well as Euclid-like observing sequences, we emulate with high fidelity Euclid satellite imaging throughout the mission's lifetime. We present the SC8 data set consisting of overlapping visible and near-infrared Euclid Wide Survey and Euclid Deep Survey imaging and low-resolution spectroscopy along with ground-based. This extensive data set enables end-to-end testing of the entire ground segment data reduction and science analysis pipeline as well as the Euclid mission infrastructure, paving the way to future scientific and technical developments and enhancements., Comment: 38 pages, 25 figures, A&A submitted
- Published
- 2024
176. Euclid: Improving the efficiency of weak lensing shear bias calibration. Pixel noise cancellation and the response method on trial
- Author
-
Jansen, H., Tewes, M., Schrabback, T., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Dinis, J., Dubath, F., Dupac, X., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Joachimi, B., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Miller, L., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Colodro-Conde, C., Scottez, V., Jansen, H., Tewes, M., Schrabback, T., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Dinis, J., Dubath, F., Dupac, X., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Joachimi, B., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Miller, L., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Colodro-Conde, C., and Scottez, V.
- Abstract
To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear measurement requires calibration using galaxy image simulations. We study the efficiency of different noise cancellation methods that aim at reducing the simulation volume required to reach a given precision in the shear measurement. Explicitly, we compared fit methods with different noise cancellations and a method based on responses. We used GalSim to simulate galaxies both on a grid and at random positions in larger scenes. Placing the galaxies at random positions requires their detection, which we performed with SExtractor. On the grid, we neglected the detection step and, therefore, the potential detection bias arising from it. The shear of the simulated images was measured with the fast moment-based method KSB, for which we note deviations from purely linear shear measurement biases. For the estimation of uncertainties, we used bootstrapping as an empirical method. We find that each method we studied on top of shape noise cancellation can further increase the efficiency of calibration simulations. The improvement depends on the considered shear amplitude range and the type of simulations (grid-based or random positions). The response method on a grid for small shears provides the biggest improvement. In the more realistic case of randomly positioned galaxies, we still find an improvement factor of 70 for small shears using the response method. Alternatively, the runtime can be lowered by a factor of 7 already using pixel noise cancellation on top of shape noise cancellation. Furthermore, we demonstrate that the efficiency of shape noise cancellation can be enhanced in the presence of blending if entire scenes are rotated instead of individual galaxies., Comment: Accepted by A&A. 24 pages, 15+7 figures, Euclid standard paper
- Published
- 2024
177. Euclid:Improving the efficiency of weak lensing shear bias calibration: Pixel noise cancellation and the response method on trial
- Author
-
Jansen, H., Tewes, M., Schrabback, T., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Dinis, J., Dubath, F., Dupac, X., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V.H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Joachimi, B., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Miller, L., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Colodro-Conde, C., Scottez, V., Jansen, H., Tewes, M., Schrabback, T., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Dinis, J., Dubath, F., Dupac, X., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V.H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Joachimi, B., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Miller, L., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Colodro-Conde, C., and Scottez, V.
- Abstract
To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear measurement requires calibration using galaxy image simulations. As it typically requires millions of simulated galaxy images and consequently a substantial computational effort, seeking methods to speed the calibration up is valuable. We study the efficiency of different noise cancellation methods that aim at reducing the simulation volume required to reach a given precision in the shear measurement. The more efficient a method is, the faster we can estimate the relevant biases up to a required precision level. Explicitly, we compared fit methods with different noise cancellations and a method based on responses. We used GalSim to simulate galaxies both on a grid and at random positions in larger scenes. Placing the galaxies at random positions requires their detection, which we performed with SExtractor. On the grid, we neglected the detection step and, therefore, the potential detection bias arising from it. The shear of the simulated images was measured with the fast moment-based method KSB, for which we note deviations from purely linear shear measurement biases. For the estimation of uncertainties, we used bootstrapping as an empirical method. We extended the response-based approach to work on a wider range of shears and provide accurate estimates of selection biases. We find that each method we studied on top of shape noise cancellation can further increase the efficiency of calibration simulations. The improvement depends on the considered shear amplitude range and the type of simulations (grid-based or random positions). The response method on a grid for small shears provides the biggest improvement. Here the runtime for the estimation of multiplicative biases can be lowered by a factor of 145 compared to the benchmark simulations without any cancellation. In the more realistic case of randomly positioned galaxies, we still find
- Published
- 2024
178. Euclid preparation. XXXVII.:Galaxy colour selections with Euclid and ground photometry for cluster weak-lensing analyses
- Author
-
Collaboration, Euclid, Lesci, G. F., Sereno, M., Radovich, M., Castignani, G., Bisigello, L., Marulli, F., Moscardini, L., Baumont, L., Covone, G., Farrens, S., Giocoli, C., Ingoglia, L., Miranda La Hera, S., Vannier, M., Biviano, A., Maurogordato, S., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Ferriol, S., Fosalba, P., Fotopoulou, S., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Grazian, A., Grupp, F., Haugan, S. V. H., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Kümmel, M., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Munari, E., Nakajima, R., Niemi, S.-M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Starck, J.-L., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Bolzonella, M., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Graciá-Carpio, J., Marcin, S., Mauri, N., Neissner, C., Nucita, A. A., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Baccigalupi, C., Ballardini, M., Borgani, S., Borlaff, A. S., Bruton, S., Burigana, C., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Cañas-Herrera, G., Chambers, K. C., Cooray, A. R., Coupon, J., Cucciati, O., Davini, S., de la Torre, S., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Díaz-Sánchez, A., Escartin Vigo, J. A., Escoffier, S., Ferrero, I., Finelli, F., Gabarra, L., Ganga, K., García-Bellido, J., Giacomini, F., Gozaliasl, G., Gwyn, S., Hildebrandt, H., Huertas-Company, M., Jimenez Muñoz, A., Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mainetti, G., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maturi, M., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Patrizii, L., Pezzotta, A., Porciani, C., Potter, D., Pöntinen, M., Reimberg, P., Rocci, P.-F., Sánchez, A. G., Schneider, A., Schultheis, M., Sefusatti, E., Simon, P., Spurio Mancini, A., Stanford, S. A., Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Collaboration, Euclid, Lesci, G. F., Sereno, M., Radovich, M., Castignani, G., Bisigello, L., Marulli, F., Moscardini, L., Baumont, L., Covone, G., Farrens, S., Giocoli, C., Ingoglia, L., Miranda La Hera, S., Vannier, M., Biviano, A., Maurogordato, S., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Ferriol, S., Fosalba, P., Fotopoulou, S., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Garilli, B., Gillis, B., Grazian, A., Grupp, F., Haugan, S. V. H., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Kümmel, M., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Munari, E., Nakajima, R., Niemi, S.-M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Starck, J.-L., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Bolzonella, M., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Graciá-Carpio, J., Marcin, S., Mauri, N., Neissner, C., Nucita, A. A., Sakr, Z., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Baccigalupi, C., Ballardini, M., Borgani, S., Borlaff, A. S., Bruton, S., Burigana, C., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Cañas-Herrera, G., Chambers, K. C., Cooray, A. R., Coupon, J., Cucciati, O., Davini, S., de la Torre, S., De Lucia, G., Desprez, G., Di Domizio, S., Dole, H., Díaz-Sánchez, A., Escartin Vigo, J. A., Escoffier, S., Ferrero, I., Finelli, F., Gabarra, L., Ganga, K., García-Bellido, J., Giacomini, F., Gozaliasl, G., Gwyn, S., Hildebrandt, H., Huertas-Company, M., Jimenez Muñoz, A., Kajava, J. J. E., Kansal, V., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mainetti, G., Maoli, R., Martinelli, M., Martins, C. J. A. P., Matthew, S., Maturi, M., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Patrizii, L., Pezzotta, A., Porciani, C., Potter, D., Pöntinen, M., Reimberg, P., Rocci, P.-F., Sánchez, A. G., Schneider, A., Schultheis, M., Sefusatti, E., Simon, P., Spurio Mancini, A., Stanford, S. A., Steinwagner, J., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., and Vergani, D.
- Abstract
Aims. We derived galaxy colour selections from Euclid and ground-based photometry, aiming to accurately define background galaxy samples in cluster weak-lensing analyses. These selections have been implemented in the Euclid data analysis pipelines for galaxy clusters. Methods. Given any set of photometric bands, we developed a method for the calibration of optimal galaxy colour selections that maximises the selection completeness, given a threshold on purity. Such colour selections are expressed as a function of the lens redshift. Results. We calibrated galaxy selections using simulated ground-based griz and EuclidYEJEHE photometry. Both selections produce a purity higher than 97%. The griz selection completeness ranges from 30% to 84% in the lens redshift range zl ∈ [0.2, 0.8]. With the full grizYEJEHE selection, the completeness improves by up to 25 percentage points, and the zl range extends up to zl = 1.5. The calibrated colour selections are stable to changes in the sample limiting magnitudes and redshift, and the selection based on griz bands provides excellent results on real external datasets. Furthermore, the calibrated selections provide stable results using alternative photometric aperture definitions obtained from different ground-based telescopes. The griz selection is also purer at high redshift and more complete at low redshift compared to colour selections found in the literature. We find excellent agreement in terms of purity and completeness between the analysis of an independent, simulated Euclid galaxy catalogue and our calibration sample, except for galaxies at high redshifts, for which we obtain up to 50 percentage points higher completeness. The combination of colour and photo-z selections ap
- Published
- 2024
179. Discovery of two gravitationally lensed quasars in the Dark Energy Survey
- Author
-
Agnello, A, Treu, T, Ostrovski, F, Schechter, PL, Buckley-Geer, EJ, Lin, H, Auger, MW, Courbin, F, Fassnacht, CD, Frieman, J, Kuropatkin, N, Marshall, PJ, McMahon, RG, Meylan, G, More, A, Suyu, SH, Rusu, CE, Finley, D, Abbott, T, Abdalla, FB, Allam, S, Annis, J, Banerji, M, Benoit-Lévy, A, Bertin, E, Brooks, D, Burke, DL, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Cunha, CE, D'Andrea, CB, da Costa, LN, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Eifler, TF, Estrada, J, Neto, A Fausti, Flaugher, B, Fosalba, P, Gerdes, DW, Gruen, D, Gutierrez, G, Honscheid, K, James, DJ, Kuehn, K, Lahav, O, Lima, M, Maia, MAG, March, M, Marshall, JL, Martini, P, Melchior, P, Miller, CJ, Miquel, R, Nichol, RC, Ogando, R, Plazas, AA, Reil, K, Romer, AK, Roodman, A, Sako, M, Sanchez, E, Santiago, B, Scarpine, V, Schubnell, M, Sevilla-Noarbe, I, Smith, RC, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Thaler, J, Tucker, D, Walker, AR, Wechsler, RH, and Zhang, Y
- Subjects
gravitational lensing: strong ,methods: observational ,methods: statistical ,quasars: emission lines ,astro-ph.GA ,astro-ph.CO ,Astronomical and Space Sciences ,Astronomy & Astrophysics - Abstract
We present spectroscopic confirmation of two new lensed quasars via dataobtained at the 6.5m Magellan/Baade Telescope. The lens candidates have beenselected from the Dark Energy Survey (DES) and WISE based on their multi-bandphotometry and extended morphology in DES images. Images of DES J0115-5244 showtwo blue point sources at either side of a red galaxy. Our long-slit dataconfirm that both point sources are images of the same quasar at $z_{s}=1.64.$The Einstein Radius estimated from the DES images is $0.51$". DES J2200+0110 isin the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Twoblue components are visible in the DES and SDSS images. The SDSS fiber spectrumshows a quasar component at $z_{s}=2.38$ and absorption compatible with Mg IIand Fe II at $z_{l}=0.799$, which we tentatively associate with the foregroundlens galaxy. The long-slit Magellan spectra show that the blue components areresolved images of the same quasar. The Einstein Radius is $0.68$"corresponding to an enclosed mass of $1.6\times10^{11}\,M_{\odot}.$ Three othercandidates were observed and rejected, two being low-redshift pairs ofstarburst galaxies, and one being a quasar behind a blue star. These firstconfirmation results provide an important empirical validation of thedata-mining and model-based selection that is being applied to the entire DESdataset.
- Published
- 2015
180. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XIV. Time delay of the doubly lensed quasar SDSS J1001+5027
- Author
-
Kumar, S. Rathna, Tewes, M., Stalin, C. S., Courbin, F., Asfandiyarov, I., Meylan, G., Eulaers, E., Prabhu, T. P., Magain, P., Van Winckel, H., and Ehgamberdiev, Sh.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory, and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3 +/- 3.3 days (1 sigma, 2.8% uncertainty), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the velocity dispersion of the lensing galaxy, in combination with deep Hubble Space Telescope imaging., Comment: 8 pages, 7 figures, published in Astronomy & Astrophysics
- Published
- 2013
- Full Text
- View/download PDF
181. Cosmology from gravitational lens time delays and Planck data
- Author
-
Suyu, S. H., Treu, T., Hilbert, S., Sonnenfeld, A., Auger, M. W., Blandford, R. D., Collett, T., Courbin, F., Fassnacht, C. D., Koopmans, L. V. E., Marshall, P. J., Meylan, G., Spiniello, C., and Tewes, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Under the assumption of a flat Lambda-CDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly -- if systematics were ruled out -- resolving the tension would require a departure from the flat Lambda-CDM cosmology, introducing for example a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present here an analysis of the gravitational lens RXJ1131-1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurements with the WMAP9 and Planck posteriors. In an open Lambda-CDM model, the data for RXJ1131-1231 in combination with Planck favor a flat universe with Omega_k = 0.00+0.01/-0.02 (68% CI). In a flat wCDM model, the combination of RXJ1131-1231 and Planck yields w = -1.52+0.19/-0.20 (68% CI)., Comment: 6 pages, 5 figures, accepted for publication in ApJL
- Published
- 2013
- Full Text
- View/download PDF
182. Dark energy with gravitational lens time delays
- Author
-
Treu, T., Marshall, P. J., Cyr-Racine, F. -Y., Fassnacht, C. D., Keeton, C. R., Linder, E. V., Moustakas, L. A., Bradac, M., Buckley-Geer, E., Collett, T., Courbin, F., Dobler, G., Finley, D. A., Hjorth, J., Kochanek, C. S., Komatsu, E., Koopmans, L. V. E., Meylan, G., Natarajan, P., Oguri, M., Suyu, S. H., Tewes, M., Wong, K. C., Zabludoff, A. I., Zaritsky, D., Anguita, T., Brunner, R. J., Cabanac, R., Falco, E. E., Fritz, A., Seidel, G., Howell, D. A., Giocoli, C., Jackson, N., Lopez, S., Metcalf, R. B., Motta, V., and Verdugo, T.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
Strong lensing gravitational time delays are a powerful and cost effective probe of dark energy. Recent studies have shown that a single lens can provide a distance measurement with 6-7 % accuracy (including random and systematic uncertainties), provided sufficient data are available to determine the time delay and reconstruct the gravitational potential of the deflector. Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one to break degeneracies in the interpretation of data from higher-redshift probes like the cosmic microwave background in terms of the dark energy equation of state. Current studies are limited by the size of the sample of known lensed quasars, but this situation is about to change. Even in this decade, wide field imaging surveys are likely to discover thousands of lensed quasars, enabling the targeted study of ~100 of these systems and resulting in substantial gains in the dark energy figure of merit. In the next decade, a further order of magnitude improvement will be possible with the 10000 systems expected to be detected and measured with LSST and Euclid. To fully exploit these gains, we identify three priorities. First, support for the development of software required for the analysis of the data. Second, in this decade, small robotic telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will transform the field by delivering accurate time delays for ~100 systems. Third, in the 2020's, LSST will deliver 1000's of time delays; the bottleneck will instead be the aquisition and analysis of high resolution imaging follow-up. Thus, the top priority for the next decade is to support fast high resolution imaging capabilities, such as those enabled by the James Webb Space Telescope and next generation adaptive optics systems on large ground based telescopes., Comment: White paper submitted to SNOWMASS2013
- Published
- 2013
183. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914
- Author
-
Eulaers, E., Tewes, M., Magain, P., Courbin, F., Asfandiyarov, I., Ehgamberdiev, Sh., Kumar, S. Rathna, Stalin, C. S., Prabhu, T. P., Meylan, G., and Van Winckel, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Aims. Within the framework of the COSMOGRAIL collaboration we present 7- and 8.5-year-long light curves and time-delay estimates for two gravitationally lensed quasars: SDSS J1206+4332 and HS 2209+1914. Methods. We monitored these doubly lensed quasars in the R-band using four telescopes: the Mercator, Maidanak, Himalayan Chandra, and Euler Telescopes, together spanning a period of 7 to 8.5 observing seasons from mid-2004 to mid-2011. The photometry of the quasar images was obtained through simultaneous deconvolution of these data. The time delays were determined from these resulting light curves using four very different techniques: a dispersion method, a spline fit, a regression difference technique, and a numerical model fit. This minimizes the bias that might be introduced by the use of a single method. Results. The time delay for SDSS J1206+4332 is Delta_t AB = 111.3 +/- 3 days with A leading B, confirming a previously published result within the error bars. For HS 2209+1914 we present a new time delay of Delta_t BA = 20.0 +/- 5 days with B leading A. Conclusions. The combination of data from up to four telescopes have led to well-sampled and nearly 9-season-long light curves, which were necessary to obtain these results, especially for the compact doubly lensed quasar HS 2209+1914., Comment: 10 pages, 10 figures, 6 tables
- Published
- 2013
- Full Text
- View/download PDF
184. Probing the inner structure of distant AGNs with gravitational lensing
- Author
-
Sluse, D., Hutsemékers, D., Courbin, F., Meylan, G., and Wambsganss, J.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Microlensing is a powerful technique which can be used to study the continuum and the broad line emitting regions in distant AGNs. After a brief description of the methods and required data, we present recent applications of this technique. We show that microlensing allows one to measure the temperature profile of the accretion disc, estimate the size and study the geometry of the region emitting the broad emission lines., Comment: 6 pages, Proceedings of the Seyfert 2012 conference
- Published
- 2013
185. Interpolating point spread function anisotropy
- Author
-
Gentile, M., Courbin, F., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics ,Astrophysics - Galaxy Astrophysics - Abstract
Planned wide-field weak lensing surveys are expected to reduce the statistical errors on the shear field to unprecedented levels. In contrast, systematic errors like those induced by the convolution with the point spread function (PSF) will not benefit from that scaling effect and will require very accurate modeling and correction. While numerous methods have been devised to carry out the PSF correction itself, modeling of the PSF shape and its spatial variations across the instrument field of view has, so far, attracted much less attention. This step is nevertheless crucial because the PSF is only known at star positions while the correction has to be performed at any position on the sky. A reliable interpolation scheme is therefore mandatory and a popular approach has been to use low-order bivariate polynomials. In the present paper, we evaluate four other classical spatial interpolation methods based on splines (B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and ordinary Kriging (OK). These methods are tested on the Star-challenge part of the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and are compared with the classical polynomial fitting (Polyfit). We also test all our interpolation methods independently of the way the PSF is modeled, by interpolating the GREAT10 star fields themselves (i.e., the PSF parameters are known exactly at star positions). We find in that case RBF to be the clear winner, closely followed by the other local methods, IDW and OK. The global methods, Polyfit and B-splines, are largely behind, especially in fields with (ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all interpolators reach a variance on PSF systematics $\sigma_{sys}^2$ better than the $1\times10^{-7}$ upper bound expected by future space-based surveys, with the local interpolators performing better than the global ones.
- Published
- 2012
- Full Text
- View/download PDF
186. Image Analysis for Cosmology: Results from the GREAT10 Star Challenge
- Author
-
Kitching, T. D., Rowe, B., Gill, M., Heymans, C., Massey, R., Witherick, D., Courbin, F., Georgatzis, K., Gentile, M., Gruen, D., Kilbinger, M., Li, G. L., Mariglis, A. P., Meylan, G., Storkey, A., and Xin, B.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the results from the first public blind PSF reconstruction challenge, the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where inaccuracies in the modelled ellipticity and size-squared can impact the ability to measure the shapes of galaxies. This is of importance because weak lensing is a particularly sensitive probe of dark energy, and can be used to map the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation of the PSF. Thirty submissions were made by 9 teams. The best methods reconstructed the PSF with an accuracy of ~0.00025 in ellipticity and ~0.00074 in size squared. For a fixed pixel scale narrower PSFs were found to be more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the turbulence power spectrum)., Comment: 23 pages, 7 figures; submitted to ApJS
- Published
- 2012
- Full Text
- View/download PDF
187. Two accurate time-delay distances from strong lensing: Implications for cosmology
- Author
-
Suyu, S. H., Auger, M. W., Hilbert, S., Marshall, P. J., Tewes, M., Treu, T., Fassnacht, C. D., Koopmans, L. V. E., Sluse, D., Blandford, R. D., Courbin, F., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Strong gravitational lenses with measured time delays between the multiple images and models of the lens mass distribution allow a one-step determination of the time-delay distance, and thus a measure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131-1231 incorporating (1) the newly measured time delays from COSMOGRAIL, (2) archival HST imaging of the lens system, (3) a new velocity-dispersion measurement of the lens galaxy of 323+/-20km/s based on Keck spectroscopy, and (4) a characterization of the line-of-sight structures via observations of the lens' environment and ray tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that takes into account all known systematic uncertainties. In combination with the WMAP7 data set in flat wCDM cosmology, our unblinded cosmological constraints for RXJ1131-1231 are: H_0=80.0+5.8/-5.7km/s/Mpc, OmegaDE=0.79+/-0.03 and w=-1.25+0.17/-0.21. We find the results to be statistically consistent with those from the analysis of the gravitational lens B1608+656. The joint constraints from the two lenses and WMAP7 are H_0=75.2+4.4/-4.2km/s/Mpc, OmegaDE=0.76+0.02/-0.03 and w=-1.14+0.17/-0.20 in flat wCDM, and H_0=73.1+2.4/-3.6km/s/Mpc, OmegaL=0.75+0.01/-0.02 and OmegaK=0.003+0.005/-0.006 in open LCDM. Time-delay lenses constrain especially tightly the Hubble constant (5.7% and 4.0% respectively in wCDM and open LCDM) and curvature of the universe. They complement well other cosmological probes, and provide an independent check of unknown systematics. Our measurement of the Hubble constant is completely independent of those based on the local distance ladder method, providing an important consistency check of the standard cosmological model and of general relativity., Comment: 21 pages, 12 figures, minor revisions based on referee's comments, accepted for publication in ApJ
- Published
- 2012
- Full Text
- View/download PDF
188. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XIII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231
- Author
-
Tewes, M., Courbin, F., Meylan, G., Kochanek, C. S., Eulaers, E., Cantale, N., Mosquera, A. M., Magain, P., Van Winckel, H., Sluse, D., Cataldi, G., Voros, D., and Dye, S.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the results from nine years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R-band light curves of the four individual images of the quasar were obtained using deconvolution photometry for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measure these delays for all possible pairs of quasar images while always processing the four light curves simultaneously. For all three methods, the delays between the three close images A, B, and C are compatible with being 0, while we measure the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1 sigma), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time-delay measurement methods yield compatible results when applied to subsets of the data., Comment: 11 pages, 9 figures, minor additions to the text only, techniques and results remain unchanged, A&A in press
- Published
- 2012
- Full Text
- View/download PDF
189. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XI. Techniques for time delay measurement in presence of microlensing
- Author
-
Tewes, M., Courbin, F., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Measuring time delays between the multiple images of gravitationally lensed quasars is now recognized as a competitive way to constrain the cosmological parameters, and it is complementary with other cosmological probes. This requires long and well sampled optical light curves of numerous lensed quasars, such as those obtained by the COSMOGRAIL collaboration. High-quality data from our monitoring campaign call for novel numerical techniques to robustly measure the delays, as well as the associated random and systematic uncertainties, even in the presence of microlensing variations. We propose three different point estimators to measure time delays, which are explicitly designed to handle light curves with extrinsic variability. These methods share a common formalism, which enables them to process data from n-image lenses. Since the estimators rely on significantly contrasting ideas, we expect them to be sensitive to different bias sources. For each method and data set, we empirically estimate both the precision and accuracy (bias) of the time delay measurement using simulated light curves with known time delays that closely mimic the observations. Finally, we test the self-consistency of our approach, and we demonstrate that our bias estimation is serviceable. These new methods, including the empirical uncertainty estimator, will represent the standard benchmark for analyzing the COSMOGRAIL light curves., Comment: 15 pages, 11 figures, stylistic improvements only, published in A&A
- Published
- 2012
- Full Text
- View/download PDF
190. A seven square degrees survey for galaxy-scale gravitational lenses with the HST imaging archive
- Author
-
Pawase, R. S., Faure, C., Courbin, F., Kokotanekova, R., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the results of a visual search for galaxy-scale gravitational lenses in nearly 7 square degrees of Hubble Space Telescope (HST) images. The dataset comprises the whole imaging data ever taken with the Advanced Camera for Surveys (ACS) in the filter F814W (I-band) up to August 31st, 2011, i.e. 6.03 square degrees excluding the field of the Cosmic Evolution Survey (COSMOS) which has been the subject of a separate visual search. In addition, we have searched for lenses in the whole Wide Field Camera 3 (WFC3) near-IR imaging dataset in all filters (1.01 square degrees) up to the same date. Our primary goal is to provide a sample of lenses with a broad range of different morphologies and lens-source brightness contrast in order estimate a lower limit to the number of galaxy-scale strong lenses in the future Euclid survey in its VIS band. Our criteria to select lenses are purely morphological as we do not use any colour or redshift information.The final candidate selection is very conservative hence leading to a nearly pure but incomplete sample. We find 49 new lens candidates: 40 in the ACS images and 9 in the WFC3 images. Out of these, 16 candidates are secure lenses owing to their striking morphology, 21 more are very good candidates, and 12 more have morphologies compatible with gravitational lensing but also compatible with other astrophysical objects. It is therefore insensitive to cosmic variance and allows to estimate the number of galaxy-scale strong lenses on the sky for a putative survey depth, which is the main result of the present work. Because of the incompleteness of the sample, the estimated lensing rates should be taken as lower limits. Using these, we anticipate that a 15 000 square degrees space survey such as Euclid will find at least 60 000 galaxy-scale strong lenses down to a limiting AB magnitude of I = 24.5 (10-sigma) or I = 25.8 (3-sigma)., Comment: 13 pages, 12 figures, Accepted for publication in MNRAS
- Published
- 2012
- Full Text
- View/download PDF
191. Microlensing of the broad line region in 17 lensed quasars
- Author
-
Sluse, D., Hutsemékers, D., Courbin, F., Meylan, G., and Wambsganss, J.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics ,Astrophysics - Galaxy Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common lines in our spectra (CIII] and MgII) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies., Comment: Accepted for publication in Astronomy and Astrophysics. Main data set available via the German virtual observatory http://dc.g-vo.org/mlqso/q/web/form and soon via CDS. Additional material available on request
- Published
- 2012
- Full Text
- View/download PDF
192. Spectroscopy of extended Ly\alpha\ envelopes around z=4.5 quasars
- Author
-
North, P. L., Courbin, F., Eigenbrod, A., and Chelouche, D.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
What are the frequency, shape, kinematics, and luminosity of Ly\alpha\ envelopes surrounding radio-quiet quasars at high redshift, and is the luminosity of these envelopes related to that of the quasar or not? As a first step towards answering these questions, we have searched for Ly\alpha\ envelopes around six radio-quiet quasars at z~4.5, using deep spectra taken with the FORS2 spectrograph attached to the UT1 of the Very Large Telescope (VLT). Using the multi-slit mode allows us to observe several point spread function stars simultaneously with the quasar, and to remove the point-like emission from the quasar, unveiling the faint underlying Ly\alpha\ envelope with unprecedented depth. An envelope is detected around four of the six quasars, which suggests that these envelopes are very frequent. Their diameter varies in the range 26
- Published
- 2012
- Full Text
- View/download PDF
193. A fast empirical method for galaxy shape measurements in weak lensing surveys
- Author
-
Tewes, M., Cantale, N., Courbin, F., Kitching, T. D., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
We describe a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of galaxies and associated PSFs according to measured shape parameters, and corrects the measured galaxy ellipticites by querying a large lookup table (LUT), built by supervised learning. We have applied this new method to the GREAT10 image analysis challenge, and present in this paper a refined solution that obtains the competitive quality factor of Q = 104, without any shear power spectrum denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an ordinary CPU., Comment: 8 pages, 6 figures. Metric values updated according to the final GREAT10 analysis software (Kitching et al. 2012, MNRAS 423, 3163-3208), no qualitative changes. Associated code available at http://lastro.epfl.ch/megalut
- Published
- 2012
- Full Text
- View/download PDF
194. Image Analysis for Cosmology: Results from the GREAT10 Galaxy Challenge
- Author
-
Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M. S. S., Harmeling, S., Heymans, C., Hirsch, M., Honscheid, K., Kacprzak, T., Kirkby, D., Margala, D., Massey, R. J., Melchior, P., Nurbaeva, G., Patton, K., Rhodes, J., Rowe, B. T. P., Taylor, A. N., Tewes, M., Viola, M., Witherick, D., Voigt, L., Young, J., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
In this paper we present results from the weak lensing shape measurement GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of magnitude step change in the level of scrutiny employed in weak lensing shape measurement analysis. We provide descriptions of each method tested and include 10 evaluation metrics over 24 simulation branches. GREAT10 was the first shape measurement challenge to include variable fields; both the shear field and the Point Spread Function (PSF) vary across the images in a realistic manner. The variable fields enable a variety of metrics that are inaccessible to constant shear simulations including a direct measure of the impact of shape measurement inaccuracies, and the impact of PSF size and ellipticity, on the shear power spectrum. To assess the impact of shape measurement bias for cosmic shear we present a general pseudo-Cl formalism, that propagates spatially varying systematics in cosmic shear through to power spectrum estimates. We also show how one-point estimators of bias can be extracted from variable shear simulations. The GREAT10 Galaxy Challenge received 95 submissions and saw a factor of 3 improvement in the accuracy achieved by shape measurement methods. The best methods achieve sub-percent average biases. We find a strong dependence in accuracy as a function of signal-to-noise, and indications of a weak dependence on galaxy type and size. Some requirements for the most ambitious cosmic shear experiments are met above a signal-to-noise ratio of 20. These results have the caveat that the simulated PSF was a ground-based PSF. Our results are a snapshot of the accuracy of current shape measurement methods and are a benchmark upon which improvement can continue. This provides a foundation for a better understanding of the strengths and limitations of shape measurement methods., Comment: Accepted to MNRAS
- Published
- 2012
- Full Text
- View/download PDF
195. The Hubble constant and new discoveries in cosmology
- Author
-
Suyu, S. H., Treu, T., Blandford, R. D., Freedman, W. L., Hilbert, S., Blake, C., Braatz, J., Courbin, F., Dunkley, J., Greenhill, L., Humphreys, E., Jha, S., Kirshner, R., Lo, K. Y., Macri, L., Madore, B. F., Marshall, P. J., Meylan, G., Mould, J., Reid, B., Reid, M., Riess, A., Schlegel, D., Scowcroft, V., and Verde, L.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
We report the outcome of a 3-day workshop on the Hubble constant (H_0) that took place during February 6-8 2012 at the Kavli Institute for Particle Astrophysics and Cosmology, on the campus of Stanford University. The participants met to address the following questions. Are there compelling scientific reasons to obtain more precise and more accurate measurements of H_0 than currently available? If there are, how can we achieve this goal? The answers that emerged from the workshop are (1) better measurements of H_0 provide critical independent constraints on dark energy, spatial curvature of the Universe, neutrino physics, and validity of general relativity, (2) a measurement of H_0 to 1% in both precision and accuracy, supported by rigorous error budgets, is within reach for several methods, and (3) multiple paths to independent determinations of H_0 are needed in order to access and control systematics., Comment: 4 pages, 1 figure, communique of workshop on the Hubble constant at KIPAC during February 6-8 2012
- Published
- 2012
196. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies
- Author
-
Sluse, D., Chantry, V., Magain, P., Courbin, F., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics - Abstract
(abridged) Gravitationally lensed quasars can be used as powerful cosmological and astrophysical probes. We can (i) infer the Hubble constant based on the time-delay technique, (ii) unveil substructures along the l.o.s. toward distant galaxies, and (iii) compare the shape and the slope of baryons and dark matter distributions in galaxies. To reach these goals, we need high-accuracy astrometry and morphology measurements of the lens. In this work, we first present new astrometry for 11 lenses with measured time delays. Using MCS deconvolution on NIC2 HST images, we reached an astrometric accuracy of about 1-2.5 mas and an accurate shape measurement of the lens galaxy. Second, we combined these measurements with those of 14 other systems to present new mass models of these lenses. This led to the following results: 1) In 4 double-image quasars, we show that the influence of the lens environment on the time delay can easily be quantified and modeled, hence putting these lenses with high priority for time-delay determination. 2) For quadruple-image quasars, the difficulty often encountered in reproducing the image positions to milli-arcsec accuracy (astrometric anomaly) is overcome by explicitly including the nearest visible galaxy in the model. However, one anomalous system (J1131-1231) does not show any luminous perturber in its vicinity, and three others (WFI2026-4536, WFI2033-4723, and B2045+265) have problematic modeling. These 4 systems are the best candidates for a pertubation by a dark matter substructure. 3) We find a significant correlation between the PA of the light and of the mass distributions in lensing galaxies. In contrast with other studies, we find that the ellipticity of the light and of the mass also correlate well, suggesting that the overall spatial distribution of matter is not very different from the baryon distribution in the inner \sim 5 kpc of lensing galaxies., Comment: Accepted for publication in Astronomy and Astrophysics abridged abstract
- Published
- 2011
- Full Text
- View/download PDF
197. Three QSOs acting as strong gravitational lenses
- Author
-
Courbin, F., Faure, C., Djorgovski, S. G., Rerat, F., Tewes, M., Meylan, G., Stern, D., Mahabal, A., Boroson, T., Dheeraj, R., and Sluse, D.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report the discovery of three new cases of QSOs acting as strong gravitational lenses on background emission line galaxies: SDSS J0827+5224 (zQSO = 0.293, zs = 0.412), SDSS J0919+2720 (zQSO = 0.209, zs = 0.558), SDSS J1005+4016 (zQSO = 0.230, zs = 0.441). The selection was carried out using a sample of 22,298 SDSS spectra displaying at least four emission lines at a redshift beyond that of the foreground QSO. The lensing nature is confirmed from Keck imaging and spectroscopy, as well as from HST/WFC3 imaging in the F475W and F814W filters. Two of the QSOs have face-on spiral host galaxies and the third is a QSO+galaxy pair. The velocity dispersion of the host galaxies, inferred from simple lens modeling, is between \sigma_v = 210 and 285 km/s, making these host galaxies comparable in mass with the SLACS sample of early-type strong lenses., Comment: 9 pages, 8 figures, accepted for publication in A&A
- Published
- 2011
- Full Text
- View/download PDF
198. Euclid Definition Study Report
- Author
-
Laureijs, R., Amiaux, J., Arduini, S., Auguères, J. -L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C., Duvet, L., Ealet, A., Garilli, B., Gondoin, P., Guzzo, L., Hoar, J., Hoekstra, H., Holmes, R., Kitching, T., Maciaszek, T., Mellier, Y., Pasian, F., Percival, W., Rhodes, J., Criado, G. Saavedra, Sauvage, M., Scaramella, R., Valenziano, L., Warren, S., Bender, R., Castander, F., Cimatti, A., Fèvre, O. Le, Kurki-Suonio, H., Levi, M., Lilje, P., Meylan, G., Nichol, R., Pedersen, K., Popa, V., Lopez, R. Rebolo, Rix, H. -W., Rottgering, H., Zeilinger, W., Grupp, F., Hudelot, P., Massey, R., Meneghetti, M., Miller, L., Paltani, S., Paulin-Henriksson, S., Pires, S., Saxton, C., Schrabback, T., Seidel, G., Walsh, J., Aghanim, N., Amendola, L., Bartlett, J., Baccigalupi, C., Beaulieu, J. -P., Benabed, K., Cuby, J. -G., Elbaz, D., Fosalba, P., Gavazzi, G., Helmi, A., Hook, I., Irwin, M., Kneib, J. -P., Kunz, M., Mannucci, F., Moscardini, L., Tao, C., Teyssier, R., Weller, J., Zamorani, G., Osorio, M. R. Zapatero, Boulade, O., Foumond, J. J., Di Giorgio, A., Guttridge, P., James, A., Kemp, M., Martignac, J., Spencer, A., Walton, D., Blümchen, T., Bonoli, C., Bortoletto, F., Cerna, C., Corcione, L., Fabron, C., Jahnke, K., Ligori, S., Madrid, F., Martin, L., Morgante, G., Pamplona, T., Prieto, E., Riva, M., Toledo, R., Trifoglio, M., Zerbi, F., Abdalla, F., Douspis, M., Grenet, C., Borgani, S., Bouwens, R., Courbin, F., Delouis, J. -M., Dubath, P., Fontana, A., Frailis, M., Grazian, A., Koppenhöfer, J., Mansutti, O., Melchior, M., Mignoli, M., Mohr, J., Neissner, C., Noddle, K., Poncet, M., Scodeggio, M., Serrano, S., Shane, N., Starck, J. -L., Surace, C., Taylor, A., Verdoes-Kleijn, G., Vuerli, C., Williams, O. R., Zacchei, A., Altieri, B., Sanz, I. Escudero, Kohley, R., Oosterbroek, T., Astier, P., Bacon, D., Bardelli, S., Baugh, C., Bellagamba, F., Benoist, C., Bianchi, D., Biviano, A., Branchini, E., Carbone, C., Cardone, V., Clements, D., Colombi, S., Conselice, C., Cresci, G., Deacon, N., Dunlop, J., Fedeli, C., Fontanot, F., Franzetti, P., Giocoli, C., Garcia-Bellido, J., Gow, J., Heavens, A., Hewett, P., Heymans, C., Holland, A., Huang, Z., Ilbert, O., Joachimi, B., Jennins, E., Kerins, E., Kiessling, A., Kirk, D., Kotak, R., Krause, O., Lahav, O., van Leeuwen, F., Lesgourgues, J., Lombardi, M., Magliocchetti, M., Maguire, K., Majerotto, E., Maoli, R., Marulli, F., Maurogordato, S., McCracken, H., McLure, R., Melchiorri, A., Merson, A., Moresco, M., Nonino, M., Norberg, P., Peacock, J., Pello, R., Penny, M., Pettorino, V., Di Porto, C., Pozzetti, L., Quercellini, C., Radovich, M., Rassat, A., Roche, N., Ronayette, S., Rossetti, E., Sartoris, B., Schneider, P., Semboloni, E., Serjeant, S., Simpson, F., Skordis, C., Smadja, G., Smartt, S., Spano, P., Spiro, S., Sullivan, M., Tilquin, A., Trotta, R., Verde, L., Wang, Y., Williger, G., Zhao, G., Zoubian, J., and Zucca, E.
- Subjects
Astrophysics - Cosmology and Extragalactic Astrophysics ,Astrophysics - Galaxy Astrophysics - Abstract
Euclid is a space-based survey mission from the European Space Agency designed to understand the origin of the Universe's accelerating expansion. It will use cosmological probes to investigate the nature of dark energy, dark matter and gravity by tracking their observational signatures on the geometry of the universe and on the cosmic history of structure formation. The mission is optimised for two independent primary cosmological probes: Weak gravitational Lensing (WL) and Baryonic Acoustic Oscillations (BAO). The Euclid payload consists of a 1.2 m Korsch telescope designed to provide a large field of view. It carries two instruments with a common field-of-view of ~0.54 deg2: the visual imager (VIS) and the near infrared instrument (NISP) which contains a slitless spectrometer and a three bands photometer. The Euclid wide survey will cover 15,000 deg2 of the extragalactic sky and is complemented by two 20 deg2 deep fields. For WL, Euclid measures the shapes of 30-40 resolved galaxies per arcmin2 in one broad visible R+I+Z band (550-920 nm). The photometric redshifts for these galaxies reach a precision of dz/(1+z) < 0.05. They are derived from three additional Euclid NIR bands (Y, J, H in the range 0.92-2.0 micron), complemented by ground based photometry in visible bands derived from public data or through engaged collaborations. The BAO are determined from a spectroscopic survey with a redshift accuracy dz/(1+z) =0.001. The slitless spectrometer, with spectral resolution ~250, predominantly detects Ha emission line galaxies. Euclid is a Medium Class mission of the ESA Cosmic Vision 2015-2025 programme, with a foreseen launch date in 2019. This report (also known as the Euclid Red Book) describes the outcome of the Phase A study., Comment: 116 pages, with executive summary and table of contents
- Published
- 2011
199. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219
- Author
-
Faure, C., Sluse, D., Cantale, N., Tewes, M., Courbin, F., Durrer, P., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Anomalous flux ratios between quasar images are suspected to be caused by substructures in lens galaxies. We present new deep and high resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the Laser Guide Star system. SDSS J0924+0219 is particularly interesting as the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3" to the North of the lens galaxy, but we show that it can not be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the South are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we do not find evidence for any other luminous substructure that may explain the quasar images flux ratios. However, owe to the persistence of the flux ratio anomaly over time (~ 7 years) a combination of microlensing and milli-lensing is the favorite explanation for the observations., Comment: Accepted for publication in A&A, 6 pages, 4 figures
- Published
- 2011
- Full Text
- View/download PDF
200. On the effect of image denoising on galaxy shape measurements
- Author
-
Nurbaeva, G., Courbin, F., Gentile, M., and Meylan, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method, based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08 challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising., Comment: Accepted for publication in A&A. 8 pages, 5 figures
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.