160 results on '"Christian Rödenbeck"'
Search Results
152. Reply to 'Anthropogenic CO2 emissions'
- Author
-
Ray L. Langenfelds, Christian Rödenbeck, C. E. Allison, Paul B. Krummel, L. Paul Steele, Roger J. Francey, Ann R. Stavert, Cathy M. Trudinger, Marcel van der Schoot, Robert J. Andres, and Rachel M. Law
- Subjects
Environmental science ,Environmental Science (miscellaneous) ,Social Sciences (miscellaneous) - Published
- 2013
- Full Text
- View/download PDF
153. Response to Comments on 'Saturation of the Southern Ocean CO 2 Sink Due to Recent Climate Change'
- Author
-
Casper Labuschagne, Erik T. Buitenhuis, Thomas J. Conway, Michel Ramonet, Takakiyo Nakazawa, Corinne Le Quéré, Nicolas Metzl, Christian Rödenbeck, Nathan P. Gillett, Martin Heimann, Ray L. Langenfelds, Antony Gomez, University of East Anglia [Norwich] (UEA), School of Environmental Sciences [Norwich], Max-Planck-Institut für Biogeochemie (MPI-BGC), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), CSIRO Marine and Atmospheric Research (CSIRO-MAR), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), South African Weather Service (SAWS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-RAMCES (ICOS-RAMCES), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Center for Atmospheric and Oceanic Studies [Sendai], Tohoku University [Sendai], Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Climatic Research Unit [Norwich] (CRU), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,geography ,Multidisciplinary ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Climate change ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,Sink (geography) ,chemistry.chemical_compound ,Oceanography ,chemistry ,13. Climate action ,Carbon dioxide ,Environmental science ,14. Life underwater ,Saturation (chemistry) ,0105 earth and related environmental sciences - Abstract
We estimated a weakening of the Southern Ocean carbon dioxide (CO 2 ) sink since 1981 relative to the trend expected from the large increase in atmospheric CO 2 . We agree with Law et al . that network choice increases the uncertainty of trend estimates but argue that their network of five locations is too small to be reliable. A future reversal of Southern Ocean CO 2 saturation as suggested by Zickfeld et al . is possible, but only at high atmospheric CO 2 concentrations, and the effect would be temporary.
- Published
- 2008
- Full Text
- View/download PDF
154. Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data
- Author
-
C. Le Quéré, Martin Heimann, Christian Rödenbeck, and Ralph F. Keeling
- Subjects
Atmospheric Science ,Biogeochemical cycle ,010504 meteorology & atmospheric sciences ,Biogeochemistry ,Inversion (meteorology) ,010501 environmental sciences ,01 natural sciences ,Ocean dynamics ,Amplitude ,Climatology ,Extratropical cyclone ,Environmental science ,Upwelling ,Spatial variability ,0105 earth and related environmental sciences - Abstract
Atmospheric measurements of O 2 /N 2 and CO 2 at up to nine sites have been used to infer the interannual variations in oceanic O 2 exchange with an inverse method. The method distinguishes the regional contributions of three latitudinal bands, partly the individual contributions of the North Pacific and the North Atlantic also. The interannual variations of the inferred O 2 fluxes in the tropical band correlate significantly with the El Nino/Southern Oscillation. Tropical O 2 variations appear to be dominated by the ventilation of the O 2 minimum zone from variations in Pacific equatorial upwelling. The interannual variations of the northern and southern extratropical bands are of similar amplitude, though the attribution to mechanisms is less clear. The interannual variations estimated by the inverse method are larger than those estimated by the current generation of global ocean biogeochemistry models, especially in the North Atlantic, suggesting that the representation of biological processes plays a role. The comparison further suggests that O 2 variability is a more stringent test to validate models than CO 2 variability, because the processes driving O 2 variability combine in the same direction and amplify the underlying climatic signal. DOI: 10.1111/j.1600-0889.2008.00375.x
- Published
- 2008
- Full Text
- View/download PDF
155. Monthly carbon emissions from natural-gas flaring and cement manufacture in the United States
- Author
-
Philippe Ciais, James C. Orr, Tobias Naegler, Christian Rödenbeck, and Olivier Aumont
- Subjects
Atmospheric Science ,Biogeochemical cycle ,010504 meteorology & atmospheric sciences ,Magnitude (mathematics) ,Flux ,Zonal and meridional ,010501 environmental sciences ,01 natural sciences ,Carbon cycle ,Troposphere ,chemistry.chemical_compound ,Amplitude ,chemistry ,13. Climate action ,Climatology ,Carbon dioxide ,Environmental science ,0105 earth and related environmental sciences - Abstract
We used observed and simulated atmospheric potential oxygen (APO) to evaluate simulated air-sea flux fields from 11 ocean global carbon cycle models. APO is defined in terms of atmospheric CO 2 , O 2 and N 2 so as not to depend on terrestrial photosynthesis and respiration. Hence, it is in principal suited to evaluate simulated air-sea fluxes of these gases. We forced two different atmospheric transport models, TM2 and TM3, with simulated air-sea fluxes from each of the 11 ocean models, and we compared resulting simulated latitudinal and seasonal variations in APO with observations. Differences between the two atmospheric transport models, which offer a first estimate of uncertainty due to atmospheric transport, are similar in magnitude to the average model-data differences and to the spread between the ocean models. Simulated annual mean meridional APO profiles qualitatively resemble the observations, although at individual stations there remain substantial differences between models and observations. The simulated amplitude of the seasonal APO variability was generally less than observed. We conclude that it is difficult to validate ocean models based on APO because shortcomings in atmospheric transport models and problems with data representativity cannot be distinguished from ocean model deficiencies. DOI: 10.1111/j.1600-0889.2006.00197.x
- Published
- 2007
- Full Text
- View/download PDF
156. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?
- Author
-
Christian Rödenbeck and Ingeborg Levin
- Subjects
Greenhouse Effect ,Fossil Fuels ,Meteorology ,Atmospheric sciences ,Troposphere ,chemistry.chemical_compound ,Germany ,media_common.cataloged_instance ,Carbon Radioisotopes ,European Union ,European union ,Greenhouse effect ,Radiocarbon analyses ,Ecology, Evolution, Behavior and Systematics ,media_common ,Original Paper ,Air Pollutants ,business.industry ,Fossil fuel ,Carbon offset ,General Medicine ,chemistry ,Carbon dioxide ,Greenhouse gas ,Kyoto protocol ,Environmental science ,Kyoto Protocol ,business - Abstract
The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.
- Full Text
- View/download PDF
157. Compensatory water effects link yearly global land CO2 sink changes to temperature
- Author
-
Nicolas Viovy, Ying-Ping Wang, Gianluca Tramontana, Kazuhito Ichii, Almut Arneth, Christopher R. Schwalm, Markus Reichstein, Dario Papale, Philippe Ciais, Sönke Zaehle, Fabian Gans, Ning Zeng, Chris Huntingford, Botond Ráduly, Etsushi Kato, Anders Ahlström, Stephen Sitch, Ulrich Weber, Pierre Friedlingstein, Martin Jung, Ben Poulter, Gustau Camps-Valls, Christian Rödenbeck, Atul K. Jain, Department of Biogeochemical Integration [Jena], Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], The Woods Hole Research Center, Woods Hole Oceanographic Institution (WHOI), Centre for Ecology and Hydrology [Wallingford] (CEH), Natural Environment Research Council (NERC), University of Exeter, Lund University [Lund], Karlsruhe Institute of Technology (KIT), Image Processing Laboratory (IPL), Universitat de València (UV), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), College of Engineering, Mathematics and Physical Sciences [Exeter] (EMPS), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Department of Atmospheric Sciences [Urbana], University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, The Institute of Applied Energy (IAE), Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli studi della Tuscia [Viterbo], NASA Goddard Space Flight Center (GSFC), Sapientia Hungarian University of Transylvania, Max-Planck-Gesellschaft, Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Institute of Atmospheric Physics [Beijing] (IAP), Chinese Academy of Sciences [Beijing] (CAS), European Project: 283080,EC:FP7:ENV,FP7-ENV-2011,GEOCARBON(2011), European Project: 640176,H2020,H2020-EO-2014,BACI(2015), European Project: 647204,H2020,ERC-2014-CoG,QUINCY(2015), European Project: 603542,EC:FP7:ENV,FP7-ENV-2013-two-stage,LUC4C(2013), European Project: 610028,EC:FP7:ERC,ERC-2013-SyG,IMBALANCE-P(2014), European Project: 647423,H2020,ERC-2014-CoG,SEDAL(2015), Exeter Climate Systems, University of Exeter, Exeter, United Kingdom, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and University of Tuscia
- Subjects
Carbon dioxide in Earth's atmosphere ,geography ,Multidisciplinary ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Meteorology ,0208 environmental biotechnology ,Eddy covariance ,Carbon sink ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,02 engineering and technology ,15. Life on land ,Atmospheric sciences ,01 natural sciences ,Sink (geography) ,020801 environmental engineering ,Carbon cycle ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science ,Terrestrial ecosystem ,Ecosystem ,Temporal scales ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal waterdriven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the yearto- year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance3–6,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
- Full Text
- View/download PDF
158. Etsushi Kato 29 , Markus Kautz 30 , Ralph F. Keeling 31
- Author
-
Nicolas Vuichard, Markus Kautz, Atul K. Jain, Richard A. Houghton, Anthony P. Walker, Bronte Tilbrook, Glen P. Peters, Christian Rödenbeck, Christopher W. Hunt, Nicolas Metzl, Andy Wiltshire, Dan Zhu, Sebastian Lienert, Ingrid T. van der Laan-Luijkx, Benjamin Poulter, Judith Hauck, Frédéric Chevallier, Philippe Ciais, Benjamin D. Stocker, Thomas Gasser, Ralph F. Keeling, Vivek K. Arora, Etsushi Kato, Gregor Rehder, Andrew C. Manning, X. Antonio Padin, Ivan D. Lima, Andrew Lenton, Steven van Heuven, Jessica N. Cross, Leticia Barbero, Robbie M. Andrew, Nathalie Lefèvre, Denis Pierrot, Roland Séférian, Yukihiro Nojiri, Ingunn Skjelvan, Meike Becker, Guido R. van der Werf, George C. Hurtt, Kees Klein Goldewijk, Stephen Sitch, Julia E. M. S. Nabel, Ian Harris, Pieter P. Tans, Robert B. Jackson, Andrew J. Watson, Jan Ivar Korsbakken, Hanqin Tian, Francesco N. Tubiello, Thomas A. Boden, Arne Körtzinger, Frank J. Millero, Benjamin Pfeil, Oliver Andrews, Corinne Le Quéré, Shin-Ichiro Nakaoka, Nicolas Viovy, Anna Peregon, Catherine E Cosca, Vanessa Haverd, Richard Betts, Josep G. Canadell, Janet J. Reimer, Louise Chini, Kim I. Currie, Jörg Schwinger, Laurent Bopp, Tatiana Ilyina, Peter Landschützer, Dorothee C. E. Bakker, Pierre Friedlingstein, Julia Pongratz, David R. Munro, Danica Lombardozzi, Pedro M. S. Monteiro, Sönke Zaehle, Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), College of Engineering, Mathematics and Physical Sciences, University of Exeter, College of Life and Environmental Sciences, University of Exeter, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Global Carbon Project, CSIRO Marine and Atmospheric Research, Department of Earth System Science [Stanford] (ESS), Stanford EARTH, Stanford University-Stanford University, Climate Change Science Institute [Oak Ridge] (CCSI), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, ESRL Chemical Sciences Division [Boulder] (CSD), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science (CIMAS), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami [Coral Gables]-University of Miami [Coral Gables], NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), National Oceanic and Atmospheric Administration (NOAA), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Department of Geographical Sciences, University of Maryland [College Park], University of Maryland System-University of Maryland System, ICOS-ATC (ICOS-ATC), NOAA Pacific Marine Environmental Laboratory [Seattle] (PMEL), National Institute of Water and Atmospheric Research [Wellington] (NIWA), International Institute for Applied Systems Analysis [Laxenburg] (IIASA), Climatic Research Unit, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Woods Hole Oceanographic Institution (WHOI), Ocean Process Analysis Laboratory, University of New Hampshire (UNH), Department of Atmospheric Sciences [Urbana], University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, The Institute of Applied Energy (IAE), Karlsruher Institut für Technologie (KIT), University of California [San Diego] (UC San Diego), University of California, PBL Netherlands Environmental Assessment Agency, Christian-Albrechts-Universität zu Kiel (CAU), Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), CISRO Oceans and Atmosphere, Antarctic Climate & Ecosystem Cooperative Research Centre, University of Tasmania [Hobart, Australia] (UTAS), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], Oeschger Centre for Climate Change Research (OCCR), University of Bern, National Center for Atmospheric Research [Boulder] (NCAR), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Department of Ocean Sciences, University of Miami [Coral Gables], Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa (INESC-ID), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST)-Instituto de Engenharia de Sistemas e Computadores (INESC), University of Wisconsin Whitewater, National Institute for Environmental Studies (NIES), Montana State University (MSU), Max-Planck-Institut für Biogeochemie (MPI-BGC), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Shandong Agricultural University (SDAU), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Wageningen University and Research [Wageningen] (WUR), Faculty of Earth and Life Sciences [Amsterdam] (FALW), Vrije Universiteit Amsterdam [Amsterdam] (VU), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), NASA Ames Research Center (ARC), Biogeochemical Systems Department [Jena], Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Huazhong University of Science and Technology [Wuhan] (HUST), Environmental Sciences, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of California (UC), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Earth and Climate
- Subjects
Meteorologie en Luchtkwaliteit ,ENVIRONMENT SIMULATOR JULES ,010504 meteorology & atmospheric sciences ,Epidemiology ,Earth science ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,7. Clean energy ,FOSSIL-FUEL COMBUSTION ,chemistry.chemical_compound ,11. Sustainability ,ddc:550 ,Energy statistics ,DIOXIDE EMISSIONS ,lcsh:Environmental sciences ,lcsh:GE1-350 ,EARTH SYSTEM MODEL ,lcsh:QE1-996.5 ,VEGETATION MODEL ,Biosphere ,Carbon dioxide ,Meteorology and Air Quality ,Bioinformatica & Diermodellen ,530 Physics ,MIXED-LAYER SCHEME ,Earth and Planetary Sciences(all) ,chemistry.chemical_element ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,INTERNATIONAL-TRADE ,12. Responsible consumption ,Carbon cycle ,ANTHROPOGENIC CO2 UPTAKE ,Deforestation ,Bio-informatics & Animal models ,Life Science ,Epidemiology, Bio-informatics & Animal models ,SDG 14 - Life Below Water ,ATMOSPHERIC CO2 ,0105 earth and related environmental sciences ,Epidemiologie ,LAND-COVER CHANGE ,WIMEK ,business.industry ,Fossil fuel ,15. Life on land ,Earth system science ,lcsh:Geology ,Earth sciences ,chemistry ,13. Climate action ,Epidemiologie, Bioinformatica & Diermodellen ,General Earth and Planetary Sciences ,Environmental science ,Physical geography ,Sink (computing) ,business ,Carbon - Abstract
44 pages, 9 tables, 9 figures.-- Corinne Le Quéré ... et al.-- This work is distributed under the Creative Commons Attribution 4.0 License, Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017)
- Full Text
- View/download PDF
159. NEE estimates 2006–2019 over Europe from a pre-operational ensemble-inversion system
- Author
-
Thomas Koch, Michal Galkowski, Saqr Munassar, Christoph Gerbig, Sophia Walther, Christian Rödenbeck, and Kai Uwe Totsche
- Subjects
Flux (metallurgy) ,13. Climate action ,Soil water ,Environmental science ,Primary production ,Biosphere ,Inversion (meteorology) ,Terrestrial ecosystem ,15. Life on land ,Sink (computing) ,Atmospheric sciences ,Standard deviation - Abstract
3-hourly Net Ecosystem Exchange (NEE) is estimated at spatial scales of 0.25 degrees over the European continent, based on the pre-operational inverse modelling framework CarboScope Regional (CSR) for the years 2006 to 2019. To assess the uncertainty originating from the choice of a-priori flux models and observational data, ensembles of inversions were produced using three terrestrial ecosystem flux models, two ocean flux models, and three sets of atmospheric stations. We find that the station set ensemble accounts for 61 % of the total spread of the annually aggregated fluxes over the full domain when varying all these elements, while the biosphere and ocean ensembles resulted in much smaller contributions to the spread of 28 % and 11 %, respectively. These percentages differ over the specific regions of Europe, based on the availability of atmospheric data. For example, the spread of the biosphere ensemble is prone to be larger in regions that are less constrained by CO2 measurements. We further investigate the unprecedented increase of temperature and simultaneous reduction of Soil Water Content (SWC) observed in 2018 and 2019. We find that NEE estimates during these two years suggest an impact of drought occurrences represented by the reduction of Net Primary Productivity (NPP), which in turn lead to less CO2 uptake across Europe in 2018 and 2019, resulting in anomalies up to 0.13 and 0.07 PgC yr-1 above the climatological mean, respectively. Annual temperature anomalies also exceeded the climatological mean by 0.46 °C in 2018 and by 0.56 °C in 2019, while standardized-precipitation-evaporation-index (SPEI) anomalies declined to −0.20 and −0.05 SPEI units below the climatological mean in both 2018 and 2019, respectively. Therefore, the biogenic fluxes showed a weaker sink of CO2 in both 2018 and 2019 (−0.22±0.05 and −0.28±0.06 PgC yr-1, respectively) in comparison with the mean −0.36±0.07 PgC yr-1 calculated over the full analysed period (i.e., fourteen years). These translate into a continental-wide reduction of the annual sink by 39 % and 22 %, respectively, larger than the typical year-to-year standard deviation of 19 % observed over the full period.
- Full Text
- View/download PDF
160. Unusual characteristics of the carbon cycle during the 2015−2016 El Niño
- Author
-
Ana Bastos, Kai Wang, Stephen W. Pacala, Hao Xu, Shilong Piao, Philippe Ciais, Jiafu Mao, Ralph F. Keeling, Xiaoying Shi, Frédéric Chevallier, Anping Chen, Chris Huntingford, Xuhui Wang, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University [Beijing], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Environmental Sciences Division [Oak Ridge], Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Centre for Ecology and Hydrology [Wallingford] (CEH), Natural Environment Research Council (NERC), Department of Biogeochemical Integration [Jena], Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Scripps Institution of Oceanography (SIO - UC San Diego), University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Department of Ecology and Evolutionary Biology [Princeton], Princeton University, Colorado State University [Fort Collins] (CSU), U.S. Department of Energy, USDOE: DE‐AC05‐00OR22725, Office of Science, SC, Biological and Environmental Research, BER, National Natural Science Foundation of China, NSFC: 41861134036, 41988101, We thank Dr. Pieter Tans and Dr. Ed Dlugokencky for providing the CO mole fraction data. We also thank the TRENDYv6 modelers for their simulations and Dr. Christian Rödenbeck for the Jena CarboScope inversion datasets. This study was supported by the National Natural Science Foundation of China (grant nos. 41861134036 and 41988101) and an Oak Ridge National Lab subcontract (grant no. 4000167205). J. Mao and X. Shi were supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation Science Focus Area and the Terrestrial Ecosystem Science Scientific Focus Area project in the Earth and Environmental Systems Sciences Division of the Biological and Environmental Research (BER) office in the US Department of Energy Office of Science. Oak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy under contract no. DE‐AC05‐00OR22725. 2, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Scripps Institution of Oceanography (SIO), and University of California-University of California
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,chemistry.chemical_element ,Atmospheric sciences ,010603 evolutionary biology ,01 natural sciences ,Ecology and Environment ,Carbon Cycle ,Carbon cycle ,atmospheric CO2 growth rate (CGR) ,Meteorology and Climatology ,medicine ,Environmental Chemistry ,Ecosystem ,El Niño ,0105 earth and related environmental sciences ,General Environmental Science ,El Nino-Southern Oscillation ,Global and Planetary Change ,Ecology ,Atmosphere ,Anomaly (natural sciences) ,Northern Hemisphere ,Carbon Dioxide ,15. Life on land ,Seasonality ,medicine.disease ,Carbon ,northern terrestrial ecosystems ,Productivity (ecology) ,chemistry ,13. Climate action ,CO2 seasonal-cycle amplitude (SCA) ,soil water deficit ,Environmental science ,Terrestrial ecosystem ,net biome productivity (NBP) - Abstract
International audience; The 2015−2016 El Niño was one of the strongest on record, but its influence on the carbon balance is less clear. Using Northern Hemisphere atmospheric CO2 observations, we found both detrended atmospheric CO2 growth rate (CGR) and CO2 seasonal-cycle amplitude (SCA) of 2015−2016 were much higher than that of other El Niño events. The simultaneous high CGR and SCA were unusual, because our analysis of long-term CO2 observations at Mauna Loa revealed a significantly negative correlation between CGR and SCA. Atmospheric inversions and terrestrial ecosystem models indicate strong northern land carbon uptake during spring but substantially reduced carbon uptake (or high emissions) during early autumn, which amplified SCA but also resulted in a small anomaly in annual carbon uptake of northern ecosystems in 2015−2016. This negative ecosystem carbon uptake anomaly in early autumn was primarily due to soil water deficits and more litter decomposition caused by enhanced spring productivity. Our study demonstrates a decoupling between seasonality and annual carbon cycle balance in northern ecosystems over 2015−2016, which is unprecedented in the past five decades of El Niño events.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.