151. Seeing Small Faces from Robust Anchor's Perspective
- Author
-
Marios Savvides, Khoa Luu, Ran Tao, and Chenchen Zhu
- Subjects
FOS: Computer and information sciences ,business.industry ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Feature extraction ,Perspective (graphical) ,Computer Science - Computer Vision and Pattern Recognition ,020207 software engineering ,02 engineering and technology ,Reduction (complexity) ,Face (geometry) ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Computer vision ,Artificial intelligence ,Face detection ,business - Abstract
This paper introduces a novel anchor design to support anchor-based face detection for superior scale-invariant performance, especially on tiny faces. To achieve this, we explicitly address the problem that anchor-based detectors drop performance drastically on faces with tiny sizes, e.g. less than 16x16 pixels. In this paper, we investigate why this is the case. We discover that current anchor design cannot guarantee high overlaps between tiny faces and anchor boxes, which increases the difficulty of training. The new Expected Max Overlapping (EMO) score is proposed which can theoretically explain the low overlapping issue and inspire several effective strategies of new anchor design leading to higher face overlaps, including anchor stride reduction with new network architectures, extra shifted anchors, and stochastic face shifting. Comprehensive experiments show that our proposed method significantly outperforms the baseline anchor-based detector, while consistently achieving state-of-the-art results on challenging face detection datasets with competitive runtime speed., Comment: CVPR 2018
- Published
- 2018
- Full Text
- View/download PDF