151. Beading plot: a novel graphics for ranking interventions in network evidence.
- Author
-
Chen C, Chuang YC, Chan ES, Chen JH, Hou WH, and Kang E
- Subjects
- Humans, Clinical Decision-Making methods, Evidence-Based Medicine methods, Evidence-Based Medicine standards, Computer Graphics, Network Meta-Analysis
- Abstract
Background: Network meta-analysis is developed to compare all available treatments; therefore it enriches evidence for clinical decision-making, offering insights into treatment effectiveness and safety when faced with multiple options. However, the complexity and numerous treatment comparisons in network meta-analysis can challenge healthcare providers and patients. The purpose of this study aimed to introduce a graphic design to present complex rankings of multiple interventions comprehensively., Methods: Our team members developed a "beading plot" to summary probability of achieving the best treatment (P-best) and global metrics including surface under the cumulative ranking curve (SUCRA) and P-score. Implemented via the "rankinma" R package, this tool summarizes rankings across diverse outcomes in network meta-analyses, and the package received an official release on the Comprehensive R Archive Network (CRAN). It includes the `PlotBead()` function for generating beading plots, which represent treatment rankings among various outcomes., Results: Beading plot has been designed based on number line plot, which effectively displays collective metrics for each treatment across various outcomes. Order on the -axis is derived from ranking metrics like P-best, SUCRA, and P-score. Continuous lines represent outcomes, and color-coded beads signify treatments., Conclusion: The beading plot is a valuable graphic that intuitively displays treatment rankings across diverse outcomes, enhancing reader-friendliness and aiding decision-making in complex network evidence scenarios. While empowering clinicians and patients to identify optimal treatments, it should be used cautiously, alongside an assessment of the overall evidence certainty., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF