151. Sulfur speciation in soured reservoirs: chemical equilibrium and kinetics.
- Author
-
Basafa, Mahsan and Hawboldt, Kelly
- Subjects
CHEMICAL equilibrium ,CHEMICAL kinetics ,SULFUR ,RESERVOIRS ,CHEMICAL speciation ,GEOLOGICAL carbon sequestration ,PARTITION coefficient (Chemistry) - Abstract
Reservoir souring is a widespread phenomenon in reservoirs undergoing seawater injection. Sulfate in the injected seawater promotes the growth of sulfate-reducing bacteria (SRB) and archaea-generating hydrogen sulfide. However, as the reservoir fluid flows from injection well to topside facilities, reactions involving formation of different sulfur species with intermediate valence states such as elemental sulfur, sulfite, polysulfide ions, and polythionates can occur. A predictive reactive model was developed in this study to investigate the chemical reactivity of sulfur species and their partitioning behavior as a function of temperature, pressure, and pH in a seawater-flooded reservoir. The presence of sulfur species with different oxidation states impacts the amount and partitioning behavior of H
2 S and, therefore, the extent of reservoir souring. The injected sulfate is reduced to H2 S microbially close to the injection well. The generated H2 S partitions between phases depending on temperature, pressure, and pH. Without considering chemical reactivity and sulfur speciation, the gas phase under test separator conditions on the surface contains 1080 ppm H2 S which is in equilibrium with the oil phase containing 295.7 ppm H2 S and water phase with H2 S content of 8.8 ppm. These values are higher than those obtained based on reactivity analysis, where sulfur speciation and chemical reactions are included. Under these conditions, the H2 S content of the gas, oil, and aqueous phases are 487 ppm, 134 ppm, and 4 ppm, respectively. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF