151. Cyclic GMP-AMP Ameliorates Diet-induced Metabolic Dysregulation and Regulates Proinflammatory Responses Distinctly from STING Activation
- Author
-
Xin Guo, Chang Shu, Honggui Li, Ya Pei, Shih-Lung Woo, Juan Zheng, Mengyang Liu, Hang Xu, Rachel Botchlett, Ting Guo, Yuli Cai, Xinsheng Gao, Jing Zhou, Lu Chen, Qifu Li, Xiaoqiu Xiao, Linglin Xie, Ke K. Zhang, Jun-Yuan Ji, Yuqing Huo, Fanyin Meng, Gianfranco Alpini, Pingwei Li, and Chaodong Wu
- Subjects
Medicine ,Science - Abstract
Abstract Endogenous cyclic GMP-AMP (cGAMP) binds and activates STING to induce type I interferons. However, whether cGAMP plays any roles in regulating metabolic homeostasis remains unknown. Here we show that exogenous cGAMP ameliorates obesity-associated metabolic dysregulation and uniquely alters proinflammatory responses. In obese mice, treatment with cGAMP significantly decreases diet-induced proinflammatory responses in liver and adipose tissues and ameliorates metabolic dysregulation. Strikingly, cGAMP exerts cell-type-specific anti-inflammatory effects on macrophages, hepatocytes, and adipocytes, which is distinct from the effect of STING activation by DMXAA on enhancing proinflammatory responses. While enhancing insulin-stimulated Akt phosphorylation in hepatocytes and adipocytes, cGAMP weakens the effects of glucagon on stimulating hepatocyte gluconeogenic enzyme expression and glucose output and blunts palmitate-induced hepatocyte fat deposition in an Akt-dependent manner. Taken together, these results suggest an essential role for cGAMP in linking innate immunity and metabolic homeostasis, indicating potential applications of cGAMP in treating obesity-associated inflammatory and metabolic diseases.
- Published
- 2017
- Full Text
- View/download PDF