151. Cell-Specific Protective Signaling Induced by the Novel AT2R-Agonist NP-6A4 on Human Endothelial and Smooth Muscle Cells
- Author
-
Ryan Toedebusch, Anthony Belenchia, and Lakshmi Pulakat
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Vascular smooth muscle ,Cell ,mitochondrial energetics ,Nitric oxide ,RTCA ,03 medical and health sciences ,chemistry.chemical_compound ,nitric oxide ,Internal medicine ,medicine ,Extracellular ,Cytotoxic T cell ,Pharmacology (medical) ,Original Research ,Pharmacology ,chemistry.chemical_classification ,Reactive oxygen species ,Chemistry ,Kinase ,lcsh:RM1-950 ,ROS ,NP-6A4 ,AT2R ,3. Good health ,lcsh:Therapeutics. Pharmacology ,030104 developmental biology ,medicine.anatomical_structure ,Endocrinology ,Apoptosis ,JNK - Abstract
Cardiovascular disease incidence continues to rise and new treatment paradigms are warranted. We reported previously that activation of Angiotensin II receptor (encoded by the X-linked Agtr2 gene) by a new peptide agonist, NP-6A4, was more effective in protecting mouse cardiomyocyte HL-1 cells and human coronary artery vascular smooth muscle cells (hCAVSMCs) from acute nutrient deficiency than other drugs tested. To elucidate further the protective effects of NP-6A4 in human cells, we studied the effects of NP-6A4 treatment on functions of human coronary artery endothelial cells (hCAECs), and hCAVSMCs. In hCAVSMCs, NP-6A4 (1 μM) increased Agtr2 mRNA (sixfold, p < 0.05) after 12-h exposure, whereas in hCAECs, significant increase in Agtr2 mRNA (hCAECs: eightfold) was observed after prolonged exposure. Interestingly, NP-6A4 treatment (1 μM, 12 h) increased AT2R protein levels in all human cells tested. Pre-treatment with AT2R-antagonist PD123319 (20 μM) and anti-AT2R siRNA (1 μM) suppressed this effect. Thus, NP-6A4 activates a positive feedback loop for AT2R expression and signaling in hCAVSMCs and hCAECs. NP-6A4 (1–20 μM) increased cell index (CI) of hCAVSMCs as determined by real time cell analyzer (RTCA), indicating that high concentrations of NP-6A4 were not cytotoxic for hCAVSMCs, rather promoting better cell attachment and growth. Seahorse Extracellular Flux Assay revealed that NP-6A4 (1 μM) treatment for 7 days increased whole cell-based mitochondrial parameters of hCAVSMCs, specifically maximal respiration (p < 0.05), spare respiratory capacity (p < 0.05) and ATP production (p < 0.05). NP-6A4 (1 μM; 7 days) also suppressed Reactive Oxygen Species (ROS) in hCAVSMCs. Exposure to Doxorubicin (DOXO) (1 μM) increased ROS in hCAVSMCs and this effect was suppressed by NP-6A4 (1 μM). In hCAECs grown in complete medium, NP-6A4 (1 μM) and Ang II (1 μM) exerted similar changes in CI. Additionally, NP-6A4 (5 μM: 12 h) increased expression of eNOS (sixfold, p < 0.05) and generation of nitric oxide (1.3-fold, p < 0.05) in hCAECs and pre-treatment with PD123319 (20 μM) suppressed this effect partially (65%). Finally, NP-6A4 decreased phosphorylation of Jun-N-terminal kinase, implicated in apoptosis of ECs in atherosclerotic sites. Taken together, NP-6A4, through its ability to increase AT2R expression and signaling, exerts different cell-specific protective effects in human VSMCs and ECs.
- Published
- 2018