In this paper, data obtained by scanning 10 artificial Korean pine forests based on Terrestrial Laser Scanning (TLS), were combined with field survey data to construct tree height curve model, height to crown base prediction model and crown contact height prediction model, and a simultaneous equation system was established. First, from the five kinds of tree height curve models selected, two models with better fitting effects were selected as the candidate models of the simultaneous equations. Then one model with good fitting effect and high applicability from the five height to crown base models was selected as base model, and the stand factors (mean DBH of stand, stand basal area, ratio of height to diameter, mean DBH of dominant trees and mean height of dominant trees) were introduced into the basic model by means of re-parameterization and optimal subset regression, the model with better fitting effect was selected as the alternative model of height to crown base model. The same method was used to select alternative crown contact height model with good fitting effect. Finally, the tree height curve model, alternative height to crown base model and alternative crown contact height model were combined in pairs to establish simultaneous equations. Through seemingly unrelated regression estimation, the best equations were selected by the goodness of fit and the test results, and the simultaneous equations were evaluated. When the optimal simultaneous equation was used to estimate the tree height, the decision coefficient R² = 0. 896, and the root mean square error RMSE= 0. 612 m; when the equations was used to estimate the height to crown, R² = 0. 575, RMSE = 0. 850 m; when the equations was used to estimate the crown contact height, R² = 0. 719, RMSE= 0. 791 m, and all kinds of inspection indexes were good. On the whole, the equation system had better fitting accuracy and test effect for tree height, height to crown and crown contact height, and can solve the internal correlation problem of tree height, height to crown and crown contact height, which provided the basis for further study of crown structure and dynamic changes of Korean pine. [ABSTRACT FROM AUTHOR]