101. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis
- Author
-
Yonghui Chen, Huan Liu, Wei Xue, Yunfei Xu, Yiran Huang, Guanghui Hu, Wei Zhai, Qun-Long Liu, Jin Zhang, and Zaoyu Wang
- Subjects
Male ,0301 basic medicine ,Medicine (miscellaneous) ,Apoptosis ,Kaplan-Meier Estimate ,Kidney ,urologic and male genital diseases ,Nephrectomy ,Metastasis ,Mice ,Exon ,0302 clinical medicine ,Cell Movement ,Pharmacology, Toxicology and Pharmaceutics (miscellaneous) ,MMP14 ,Middle Aged ,Prognosis ,Kidney Neoplasms ,Gene Expression Regulation, Neoplastic ,030220 oncology & carcinogenesis ,Disease Progression ,Female ,Research Paper ,Adult ,renal cell carcinoma ,circPTCH1 ,Epithelial-Mesenchymal Transition ,Biology ,03 medical and health sciences ,In vivo ,Cell Line, Tumor ,Matrix Metalloproteinase 14 ,medicine ,metastasis ,Animals ,Humans ,Gene silencing ,Neoplasm Invasiveness ,Carcinoma, Renal Cell ,Aged ,miR-485-5p ,Microarray analysis techniques ,Intron ,Computational Biology ,RNA ,RNA, Circular ,medicine.disease ,Xenograft Model Antitumor Assays ,MicroRNAs ,030104 developmental biology ,Tissue Array Analysis ,Cancer research ,Neoplasm Grading - Abstract
Background: Circular RNAs (circRNAs) are a new class of non-coding RNAs (ncRNAs) that are derived from exons or introns by special selective shearing. circRNAs have been shown to play critical roles in various human cancers. However, their roles in renal cell carcinoma (RCC) and the underlying mechanisms remain largely unknown. Methods: A novel circRNA-circPTCH1, was identified from a microarray analysis of five paired RCC tissues. Then, we validated its expression and characterization through qRT-PCR, gel electrophoresis, RNase R digestion assays and Sanger sequencing. Functional experiments were performed to determine the effect of circPTCH1 on RCC progression both in vitro and in vivo. The interactions between circPTCH1 and miR-485-5p were clarified by RNA pull-down, luciferase reporter and RNA immunoprecipitation (RIP) assays. Results: We observed that circPTCH1 was up-regulated in RCC cell lines and tumor samples, and higher levels of circPTCH1 were significantly correlated with worse patient survival, advanced Fuhrman grade and greater risk of metastases. Elevated circPTCH1 expression led to increased migration and invasion of RCC cells both in vitro and in vivo whereas silencing circPTCH1 decreased migration and invasion and impeded the epithelial-mesenchymal transition (EMT) of RCC cells. Mechanistically, we elucidated that circPTCH1 could directly bind miR-485-5p and subsequently suppress expression of the target gene MMP14. Conclusion: circPTCH1 promotes RCC metastasis via the miR-485-5p/MMP14 axis and activation of the EMT process. Targeting circPTCH1 may represent a promising therapeutic strategy for metastatic RCC.
- Published
- 2020
- Full Text
- View/download PDF