Introduction Reducing dependence on auxiliary energy is the basic objective in all farming systems. Based on scientific research, potential production of different agricultural ecosystems assists to improve the efficiency of production. Since energy consumption is one of the most important necessities in different production systems (ecologic, low-input, medium-input, high-input and integrated), introduction of an efficient system of agriculture will contribution to the economic cycle of agriculture. So far, a few studies have been conducted to evaluate energy consumption of different production systems of beans in Iran, therefore this study examine energy budget of different input intensity for bean varieties. There have been many attempts to define agricultural sustainability in recent decades; In fact, the concepts of sustainable agriculture have been common since the late twentieth century. But in the first decades of this century it was used as synonymous with terms such as organic agriculture, ecological, precision agriculture, biodynamic, organic and low input agriculture. The main objectives of sustainable agriculture are optimal production of food with increased quality and quantity, conserving water and soil conservation and increased economic benefits for farmers, agricultural activity accordance with ecological processes and environmental protection, the use of appropriate technologies, non-deployment of harmful inputs to the environment, as well as human health and animal. Materials & Methods The experimental design was a split plot with five intensities of inputs: ecologic, low-input, medium-input, high-input and integrated comprising the main treatments, and different bean varieties (navy bean cv. Dorsa, kidney bean cv. Ks-31169 and pinto bean cv. Sadri) as sub-treatments that were applied with three replications. The experiment was conducted in 2016 in National Bean Research Station at Khomeyn, Iran. Based on the energy equivalents of the inputs and outputs, energy use efficiency, energy productivity, specific energy, energy intensiveness, net energy and energy intensity of production were calculated. Results & Discussion The total energy input for ecologic, low-input, medium-input, high-input and integrated system was 14121, 32432, 24260, 37118 and 57390 MJ ha-1, respectively. The total energy output for ecologic, low-input, medium-input, high-input and integrated systems was estimated as 40135, 51382, 33824, 46417 and 60142 MJ ha-1, respectively. Averaged over five evaluated systems and three varieties of bean, the greatest and the least direct energy used in ecologic system of Sadri and integrated system of Ks-31169 (58% vs. 36%), indirect energy used in integrated system of Ks-31169 and ecological system of Sadri (64% vs. 42%), renewable energy used in ecological system of Ks-31169 and high-input system of Sadri (37 vs. 6) and non-renewable energy used in high-input system of Sadri and ecological system of Ks-31169 (94 vs. 63). The greatest energy efficiency and environmental efficiency of support energy was observed in ecologic system of Sadri (3.3 and 3.5, respectively), indicating 155 and 169 percent greater efficiency compared with the high-input system of Sadri. Zare-Faizabad and Koocheki (2000) compared conventional and ecological systems of wheat and concluded that yield of low-input and organic system is lower than other systems, but efficiency of energy is higher in this system. In a study to evaluate the energy efficiency of organic and conventional systems in corn and wheat reported that energy use efficiency of organic system was 29-70 percent greater than conventional system. Ozkan et al. (2004) on their study on different agronomic systems reported that, in integrated management systems urea fertilizer and machinery are the most important inputs and efficient use of them are essential to improve energy use efficiency of these systems. Nassi et al. (2011) stated that low-input systems had less energy inputs compared to conventional systems. This decrease in input energy resulted in greater energy use efficiency in these systems. Conclusion It could be concluded that ecologic system improved ecosystem service, especially non-market service in comparison with other systems. Although reduction of energy intensity of production (output energy) and energy intensity of consumption (input energy) reduced total value of the services in ecological agriculture, however moving toward sustainable and ecologic agriculture resulted in more non-market services such as health maintenance system of production and the production of healthy food.