La leucemia mieloide acuta (LMA) è una neoplasia del sangue caratterizzata dalla proliferazione clonale anomala di blasti indifferenziati nella nicchia midollare. Diversi lavori hanno suggerito che le cellule di LMA siano in grado di rimodellare il microambiente midollare generando una "nicchia leucemica" in grado di favorire la malattia, sopprimendo al contempo la normale emopoiesi. Infatti, esse alterano il differenziamento osteogenico delle cellule mesenchimali stromali derivate dal midollo osseo (BMSC), favorendo l’accumulo di osteoprogenitori. Ulteriori studi sono necessari per comprendere gli effetti che le alterazioni della componente osteogenica del midollo osseo hanno sulla malattia. In questo lavoro abbiamo studiato i cambiamenti indotti dalle cellule leucemiche nella capacità delle BMSCs di formare osso e una nicchia midollare funzionale. Per farlo abbiamo utilizzato due sistemi in vivo, specifici per valutare in un ambiente fisiologico il potenziale osteogenico e la capacità di stabilire una nicchia stromale completa. Abbiamo riscontrato che le BMSC derivanti da paziente (L-BMSC) e le BMSC derivate da donatore sano (N-BMSC) presentano morfologia, immunofenotipo, potenziale proliferativo e differenziativo simili in vitro ma le L-BMSC mostrano una diminuzione significativa dei livelli degli mRNA di Kit-ligand, un fattore che regola l'emopoiesi, e di Osterix, un gene che regola l'osteogenesi. Inoltre, gli impianti ottenuti da L-BMSC hanno mostrato una ridotta capacità di formazione ossea matura e hanno sviluppato una nicchia ricca di osteoprogenitori con un aumento di cellule osteoprogenitrici esprimenti Osterix senza però mostrare variazione nel numero di osteoclasti. Questi dati suggeriscono che le cellule leucemiche possono modulare irreversibilmente la differenziazione delle BMSC verso i preosteoblasti, con una riduzione della quantità di osso. È interessante notare che il nostro secondo modello in vivo ha mostrato che gli impianti derivati da L-BMSC contengono una frazione occupata da adipociti maggiore rispetto ai trapianti di N-BMSC, mantenendo però un rapporto cellule mieloidi/globuli rossi simile. Inoltre, abbiamo cercato di chiarire se l'alterazione della maturazione verso gli osteoblasti nelle BMSC sia dovuta specificamente all'infiltrazione di cellule LMA. Utilizzando un modello di nicchia 2D in vitro, abbiamo osservato che le linee cellulari LMA inducono la formazione di osteoprogenitori attraverso il contatto diretto cellula-cellula. Infatti, le N-BMSC coltivate per 3 giorni con cellule LMA hanno mostrato un aumento della fosfatasi alcalina non specifica del tessuto (TNAP), un marcatore osteogenico precoce, e una riduzione dell'osteopontina/SPP1 e dell'osteocalcina/BGLAP, marcatori tardo-osteogenici. Inoltre, le cellule LMA hanno indotto nelle BMSC una riduzione dei geni che modulano la normale ematopoiesi e un aumento dei geni implicati nella leucemogenesi, contribuendo alla generazione di un microambiente tumorale permissivo alla crescita della leucemia e sfavorevole alla normale emopoiesi. Abbiamo poi scoperto che le cellule LMA mediano l'attivazione di Notch nelle BMSC. La stimolazione con Jagged1, un ligando di Notch, induce la sovraespressione di TNAP nelle BMSC. Al contrario, l'inibizione dell'attivazione di Notch indotta da DAPT impedisce l'up-regolazione di TNAP. Inoltre, abbiamo dimostrato che l'attivazione di Notch nelle BMSC favorisce l'instaurarsi di un ciclo auto-rinforzante che diffonde le alterazioni lungo la nicchia. Infine, utilizzando un sistema in vivo specifico per valutare il potenziale osteogenico, abbiamo scoperto che la capacità di formazione ossea delle N-BMSC risulta ridotta quando i topi vengono trapiantati con cellule LMA. Questi risultati suggeriscono che le cellule di LMA alterano l'impegno osteogenico delle BMSC attraverso l'attivazione di Notch, dando un vantaggio alle cellule leucemiche a scapito delle normali cellule staminali ematopoietiche. Acute myeloid leukemia (AML) is a blood neoplasm characterized by the abnormal clonal proliferation of undifferentiated blasts which progressively occupy and transform the bone marrow (BM) niche. In the last decades, several evidences suggested that AML cells remodel the BM microenvironment generating a “leukemia niche” able to favor leukemia cell survival, spreading, and chemoresistance, while suppressing normal hematopoiesis. Several murine models have shown that AML cells skew the bone marrow-derived mesenchymal stromal cells (BMSC) toward an ineffective osteolineage differentiation with an accumulation of osteoprogenitors in the AML BM. However, further studies are needed to understand the effects that alterations in the osteogenic component of BM have on the disease. We investigated if AML derived-BMSC (AML-BMSC) have undergone significant changes in their capability to form bone and a BM niche after exposure to patient leukemia in the BM using two in vivo systems specific to assess in a physiologic environment the osteogenic potential and the capacity to establish a complete stromal niche. We found that AML-BMSC and healthy donor-derived BMSCs (HD-BMSC) displayed a similar in vitro morphology, immunophenotype, proliferative, and differentiation potential. However AML-BMSC exhibit a significantly diminished mRNA levels of Kit-ligand/KITLG, a factor regulating hematopoiesis within the niche, and of Osterix/SP7, a gene regulating osteogenesis. Histological analysis of the transplants harvested from the first in vivo model revealed new bone formation in both AML- and HD-BMSC groups. However, AML-BMSCs showed a reduced mature bone formation capacity and developed an osteoprogenitor-rich niche with the presence of Osterix-expressing osteoprogenitor cells. Comparative analysis of osteoclast formation failed to show significant differences. These data suggest that leukemia cells can irreversibly modulate BMSC differentiation toward pre-osteoblasts, with a reduction in the amount of bone without changes in osteoclast numbers. Interestingly, our second in vivo model showed that AML-BMSC-derived ossicles contained a significantly increased fraction occupied by adipocytes when compared to HD-BMSC transplants with the maintenance of a similar myeloid/red blood cell ratio. Moreover, we tried to elucidate if the alteration of the osteoblastic commitment in BMSCs is specifically due to AML infiltration. Using an in vitro 2D niche model, we observed that AML cell lines primed HD-BMSC toward osteoprogenitors by direct cell-cell contact. Particularly, HD-BMSCs cocultured for 3 days with AML cells showed an up-regulation of Tissue Non-specific Alkaline Phosphatase (TNAP), an early-osteogenic marker, and a reduction of osteopontin/SPP1 and osteocalcin/BGLAP, late-osteogenic markers. Moreover, AML cells induced in BMSC a reduction of genes modulating normal hematopoiesis and an increase of genes implicated in leukemogenesis, contributing to the generation of a niche that becomes permissive to leukemia growth. Then we found that AML cells mediated the activation of Notch in BMSC. The stimulation with Jagged1, a Notch ligand, induces TNAP overexpression in BMSCs. In contrast, inhibition of Notch activation, induced by DAPT, prevent TNAP up-regulation. Furthermore, we showed that Notch activation in BMSCs favors the establishment of a self-reinforcing loop that spread the alterations along the BM niche. Lastly, using the in vivo system specific to assess the osteogenic potential we found that the bone formation capacity of HD-BMSC was reduced when mice were transplanted with HL-60 AML cells. All these results underline that AML cells alter the osteogenic commitment of BMSC through the activation of Notch, giving an advantage to leukemic cells at the expense of normal hematopoietic stem cells.