11,117 results on '"X, Cai"'
Search Results
102. On the Fairness Performance of NOMA-Based Wireless Powered Communication Networks.
- Author
-
Yong Liu 0005, Xuehan Chen, Lin X. Cai, Qingchun Chen, Ruoting Gong, and Dong Tang
- Published
- 2019
- Full Text
- View/download PDF
103. Only Those Requested Count: Proactive Scheduling Policies for Minimizing Effective Age-of-Information.
- Author
-
Bo Yin 0001, Shuai Zhang 0013, Yu Cheng 0003, Lin X. Cai, Zhiyuan Jiang, Sheng Zhou 0001, and Zhisheng Niu
- Published
- 2019
- Full Text
- View/download PDF
104. Towards Assume-Guarantee Profiles for Autonomous Vehicles.
- Author
-
Tung Phan-Minh, Karena X. Cai, and Richard M. Murray
- Published
- 2019
- Full Text
- View/download PDF
105. Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions
- Author
-
J. Zhong, X. Cai, and Z.-T. Xie
- Subjects
Geology ,QE1-996.5 - Abstract
A synthetic inflow turbulence generator was implemented in the idealised Weather Research and Forecasting large eddy simulation (WRF-LES v3.6.1) model under neutral atmospheric conditions. This method is based on an exponential correlation function and generates a series of two-dimensional slices of data which are correlated both in space and in time. These data satisfy a spectrum with a near “-5/3” inertial subrange, suggesting its excellent capability for high Reynolds number atmospheric flows. It is more computationally efficient than other synthetic turbulence generation approaches, such as three-dimensional digital filter methods. A WRF-LES simulation with periodic boundary conditions was conducted to provide prior mean profiles of first and second moments of turbulence for the synthetic turbulence generation method, and the results of the periodic case were also used to evaluate the inflow case. The inflow case generated similar turbulence structures to those of the periodic case after a short adjustment distance. The inflow case yielded a mean velocity profile and second-moment profiles that agreed well with those generated using periodic boundary conditions, after a short adjustment distance. For the range of the integral length scales of the inflow turbulence (±40 %), its effect on the mean velocity profiles is negligible, whereas its influence on the second-moment profiles is more visible, in particular for the smallest integral length scales, e.g. those with the friction velocity of less than 4 % error of the reference data at x/H=7. This implementation enables a WRF-LES simulation of a horizontally inhomogeneous case with non-repeated surface land-use patterns and can be extended so as to conduct a multi-scale seamless nesting simulation from a meso-scale domain with a kilometre-scale resolution down to LES domains with metre-scale resolutions.
- Published
- 2021
- Full Text
- View/download PDF
106. Genomic analysis of GBS data reveals genes associated with facial pigmentation in Xinyang blue-shelled layers
- Author
-
H. Hou, X. Wang, C. Zhang, Y. Tu, W. Lv, X. Cai, Z. Xu, J. Yao, and C. Yang
- Subjects
Agriculture ,Animal culture ,SF1-1100 ,Science ,Zoology ,QL1-991 - Abstract
Facial pigmentation is an important economic trait of chickens, especially for laying hens, which will affect the carcass appearance of eliminated layers. Therefore, identifying the genomic regions and exploring the function of this region that contributes to understanding the variation of skin color traits is significant for breeding. In the study, 291 pure-line Xinyang blue-shelled laying hens were selected, of which 75 were dark-faced chickens and 216 were white-faced chickens. The population was sequenced and typed by GBS genotyping technology. The obtained high-quality SNPs and pigmentation phenotypes were analyzed by a genome-wide association study (GWAS) and a FST scan. Based on the two analytical methods, we identified a same genomic region (10.70–11.60 Mb) on chromosome 20 with 68 significant SNPs (−log 10(P)>6), mapped to 10 known genes, including NPEPL1, EDN3, GNAS, C20orf85, VAPB, BMP7, TUBB1, ELMO2, DDX27, and NCOA5, which are associated with dermal hyperpigmentation.
- Published
- 2020
- Full Text
- View/download PDF
107. Disentangling the Effects of Restriction and Exchange With Diffusion Exchange Spectroscopy
- Author
-
Teddy X. Cai, Nathan H. Williamson, Rea Ravin, and Peter J. Basser
- Subjects
restricted diffusion ,heterogeneous ,tissue microstructure ,double diffusion encoding ,motional averaging ,static gradient spin echo ,Physics ,QC1-999 - Abstract
Diffusion exchange spectroscopy (DEXSY) is a multidimensional NMR technique that can reveal how water molecules exchange between compartments within heterogeneous media, such as biological tissue. Data from DEXSY experiments is typically processed using numerical inverse Laplace transforms (ILTs) to produce a diffusion-diffusion spectrum. A tacit assumption of this ILT approach is that the signal behavior is Gaussian—i.e., the spin echo intensity decays exponentially with the degree of diffusion weighting. The assumptions that underlie Gaussian signal behavior may be violated, however, depending on the gradient strength applied and the sample under study. We argue that non-Gaussian signal behavior due to restrictions is to be expected in the study of biological tissue using diffusion NMR. Further, we argue that this signal behavior can produce confounding features in the diffusion-diffusion spectra obtained from numerical ILTs of DEXSY data—entangling the effects of restriction and exchange. Specifically, restricted signal behavior can result in broadening of peaks and in the appearance of illusory exchanging compartments with distributed diffusivities, which pearl into multiple peaks if not highly regularized. We demonstrate these effects on simulated data. That said, we suggest the use of features in the signal acquisition domain that can be used to rapidly probe exchange without employing an ILT. We also propose a means to characterize the non-Gaussian signal behavior due to restrictions within a sample using DEXSY measurements with a near zero mixing time or storage interval. We propose a combined acquisition scheme to independently characterize restriction and exchange with various DEXSY measurements, which we term Restriction and Exchange from Equally-weighted Double and Single Diffusion Encodings (REEDS-DE). We test this method on ex vivo neonatal mouse spinal cord—a sample consisting primarily of gray matter—using a low-field, static gradient NMR system. In sum, we highlight critical shortcomings of prevailing DEXSY analysis methods that conflate the effects of restriction and exchange, and suggest a viable experimental approach to disentangle them.
- Published
- 2022
- Full Text
- View/download PDF
108. Measurement of the absolute branching fraction of the inclusive decay $$\Lambda _c^+ \rightarrow K_S^0X$$ Λ c + → K S 0 X
- Author
-
M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Anita, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. B. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei Li, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. B. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, T. Weber, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, X. L. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, and J. H. Zou
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We report the first measurement of the absolute branching fraction of the inclusive decay $$\Lambda _c^+ \rightarrow K_S^0X$$ Λ c + → K S 0 X . The analysis is performed using an $$e^+e^-$$ e + e - collision data sample corresponding to an integrated luminosity of 567 $$\hbox {pb}^{-1}$$ pb - 1 taken at $$\sqrt{s}$$ s = 4.6 GeV with the BESIII detector. Using eleven Cabibbo-favored $${\bar{\Lambda }}_c^-$$ Λ ¯ c - decay modes and the double-tag technique, this absolute branching fraction is measured to be $${\mathcal {B}}(\Lambda _c^+ \rightarrow K_S^0X)=(9.9\pm 0.6\pm 0.4)\%$$ B ( Λ c + → K S 0 X ) = ( 9.9 ± 0.6 ± 0.4 ) % , where the first uncertainty is statistical and the second systematic. The relative deviation between the branching fractions for the inclusive decay and the observed exclusive decays is $$(18.7\pm 8.3)\%$$ ( 18.7 ± 8.3 ) % , which indicates that there may be some unobserved decay modes with a neutron or excited baryons in the final state.
- Published
- 2020
- Full Text
- View/download PDF
109. Wuhan MST radar: technical features and validation of wind observations
- Author
-
L. Qiao, G. Chen, S. Zhang, Q. Yao, W. Gong, M. Su, F. Chen, E. Liu, W. Zhang, H. Zeng, X. Cai, H. Song, H. Zhang, and L. Zhang
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
The Wuhan mesosphere–stratosphere–troposphere (MST) radar is a 53.8 MHz monostatic Doppler radar, located in Chongyang, Hubei Province, China, and has the capability to observe the dynamics of the mesosphere–stratosphere–troposphere region in the subtropical latitudes. The radar system has an antenna array of 576 Yagi antennas, and the maximum peak power is 172 kW. The Wuhan MST radar is efficient and cost-effective and employs more simplified and more flexible architecture. It includes 24 big transmitter–receiver (TR) modules, and the row or column data port of each big TR module connects 24 small TR modules via the corresponding row or column feeding network. Each antenna is driven by a small TR module with peak output power of 300 W. The arrangement of the antenna field, the functions of the timing signals, the structure of the TR modules, and the clutter suppression procedure are described in detail in this paper. We compared the MST radar observation results with other instruments and related models in the whole MST region for validation. Firstly, we made a comparison of the horizontal winds in the troposphere and low stratosphere observed by the Wuhan MST radar with the radiosonde on 22 May 2016, as well as with the ERA-Interim data sets (2016 and 2017) in the long term. Then, we made a comparison of the observed horizontal winds in the mesosphere with the meteor radar and the Horizontal Wind Model 14 (HWM-14) model in the same way. In general, good agreements can be obtained, and this indicates that the Wuhan MST is an effective tool to measure the three-dimensional wind fields of the MST region.
- Published
- 2020
- Full Text
- View/download PDF
110. Observation of X(2370) and search for X(2120) in $$J/\psi \rightarrow \gamma K{\bar{K}} \eta '$$ J/ψ→γKK¯η′
- Author
-
M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, Q. An, Anita, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. Chai, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, Y. B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, Z. L. Dou, S. X. Du, J. Z. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. S. Lange, P. Larin, L. Lavezzi, H. Leithoff, T. Lenz, C. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, J. W. Li, Ke Li, L. K. Li, Lei Li, P. L. Li, P. R. Li, Q. Y. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, X. N. Li, Z. B. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, D. X. Lin, Y. J. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. Y. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, X. Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. D. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, N. Yu. Muchnoi, H. Muramatsu, A. Mustafa, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, C. F. Qiao, N. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, M. Richter, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, C. Schnier, K. Schoenning, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, Y. X. Tan, C. J. Tang, G. Y. Tang, X. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, M. Z. Wang, Meng Wang, P. L. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. Y. Wang, Zongyuan Wang, T. Weber, D. H. Wei, P. Weidenkaff, F. Weidner, H. W. Wen, S. P. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, T. Yu, C. Z. Yuan, X. Q. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, Lei Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, and J. H. Zou
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Using a sample of $$1.31\times 10^{9} ~J/\psi $$ 1.31×109J/ψ events collected with the BESIII detector, we perform a study of $$J/\psi \rightarrow \gamma K{\bar{K}}\eta '$$ J/ψ→γKK¯η′ . X(2370) is observed in the $$K{\bar{K}}\eta '$$ KK¯η′ invariant-mass distribution with a statistical significance of $$8.3\sigma $$ 8.3σ . Its resonance parameters are measured to be $$M=2341.6\pm 6.5 \, \text {(stat.)} \pm 5.7 \, \text {(syst.)}~ \hbox {MeV}/c^{2}$$ M=2341.6±6.5(stat.)±5.7(syst.)MeV/c2 and $$\Gamma = 117\pm 10 \, \text {(stat.)}\pm 8 \, \text {(syst.)}~\hbox {MeV}$$ Γ=117±10(stat.)±8(syst.)MeV . The product branching fractions for $$J/\psi \rightarrow \gamma X(2370),X(2370)\rightarrow K^{+}K^{-}\eta '$$ J/ψ→γX(2370),X(2370)→K+K-η′ and $$J/\psi \rightarrow \gamma X(2370),X(2370)\rightarrow K_{S}^{0}K_{S}^{0}\eta '$$ J/ψ→γX(2370),X(2370)→KS0KS0η′ are determined to be $$(1.79\pm 0.23\, \text {(stat.)}\pm 0.65\,\text {(syst.)})\times 10^{-5}$$ (1.79±0.23(stat.)±0.65(syst.))×10-5 and $$(1.18\pm 0.32\, \text {(stat.)}\pm 0.39\, \text {(syst.)})\times 10^{-5}$$ (1.18±0.32(stat.)±0.39(syst.))×10-5 , respectively. No evident signal for X(2120) is observed in the $$K{\bar{K}}\eta '$$ KK¯η′ invariant-mass distribution. The upper limits for the product branching fractions of $${\mathcal {B}}(J/\psi \rightarrow \gamma X(2120)\rightarrow \gamma K^{+} K^{-} \eta ')$$ B(J/ψ→γX(2120)→γK+K-η′) and $${\mathcal {B}}(J/\psi \rightarrow \gamma X(2120)\rightarrow \gamma K_{S}^{0} K_{S}^{0} \eta ')$$ B(J/ψ→γX(2120)→γKS0KS0η′) are determined to be $$1.49\times 10^{-5}$$ 1.49×10-5 and $$6.38\times 10^{-6}$$ 6.38×10-6 at the 90% confidence level, respectively.
- Published
- 2020
- Full Text
- View/download PDF
111. URBAN ECOLOGICAL SPACE CHANGES OF 338 PREFECTURE-LEVEL CITIES IN CHINA FROM 2016 TO 2017 WITH HIGH-PRECISION URBAN BOUNDARY AND LAND COVER DATA
- Author
-
X. Ning, H. Wang, Y. Liu, M. Hao, Q. Dong, W. Xu, X. Cai, M. Fu, and W. Dong
- Subjects
Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Applied optics. Photonics ,TA1501-1820 - Abstract
Urban ecological space is a significant factor for sustainable urban development and ecological civilization construction. Traditional urban ecological space analysis mainly used medium-resolution image data at large scales and used high-resolution images at a typical urban scale. Few studies focused on the high-precision ecological space analysis at a national urban scale. In this study, high-precision urban boundary and land cover data were utilized to analyze the urban ecological space change and its reason from 2016 to 2017. Ecological space was extracted and merged from high-precision land cover data, which came from the National Geoinformation Survey data of China. Results showed that in 2017, the total urban ecological space area of 338 prefecture-level cities in China was 8514.2 square kilometers, accounting for 22.4% of the total urban area, which was far below the threshold of 40% for evaluating the urban green coverage in China. Urban ecological space of 184 cities declined. There were four principal reasons for the decrease of urban ecological space. First, the green space supporting the buildings was occupied. Second, the green landscape space near rivers and lakes was occupied. Third, blocks of woodland were occupied. Fourth, the water area was occupied. The reduced urban ecological space was mainly changed into construction sites, structures, and buildings. Urban ecological space of China was seriously insufficient, and it was heavily occupied. Adequate ecological space should be preserved not only in new urban development areas but also in the old urban areas to ensure people a more comfortable living environment.
- Published
- 2020
- Full Text
- View/download PDF
112. A SIMPLE AND EFFICIENT CROSS-SENSOR RETRIEVAL METHOD FOR RETRIEVING STEREO IMAGES BY MULTISPECTRAL IMAGE
- Author
-
F. Peng, W. Lu, L. Xu, and X. Cai
- Subjects
Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Applied optics. Photonics ,TA1501-1820 - Abstract
Some users need to utilize a query multispectral image to quickly locate desired panchromatic stereo images from massive remotely sensed images. A stereo pair or triplet is different with a multispectral image in terms of the viewing number, viewing angle, band, radiometric resolution, spatial resolution, and ability to obtain height information. To perform the cross-sensor retrieval, the orthoimage or digital surface model (DSM) is usually produced from stereo images in a long time, drastically reducing the retrieval efficiency. To achieve a high efficiency, our study explores the potential of the raw viewing images of stereo images to be immediately used in the retrieval. We proposed a simple and efficient cross-sensor retrieval method by doing similarity matching between the query multispectral image and the raw viewing images of stereo images, using probability histograms separately produced from them. Experimental results show that our method outperformed two methods based on the orthoimage in terms of both the retrieval efficiency and precision. Our method handily deals with differences between stereo images and multispectral images, and efficiently achieves the high-accuracy cross-sensor retrieval with no need to produce the orthoimage or DSM.
- Published
- 2020
- Full Text
- View/download PDF
113. Precise measurements of branching fractions for D s + $$ {\mathrm{D}}_{\mathrm{s}}^{+} $$ meson decays to two pseudoscalar mesons
- Author
-
The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Anita, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. B. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei Li, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. B. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, X. L. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, and J. H. Zou
- Subjects
Branching fraction ,Charm physics ,e +-e − Experiments ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We measure the branching fractions for seven D s + $$ {D}_s^{+} $$ two-body decays to pseudo-scalar mesons, by analyzing data collected at s $$ \sqrt{s} $$ = 4.178 ∼ 4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B D s + → K + η ' = 2.68 ± 0.17 ± 0.17 ± 0.08 × 10 − 3 , B D s + → η ' π + = 37.8 ± 0.4 ± 2.1 ± 1.2 × 10 − 3 , B D s + → K + η = 1.62 ± 0.10 ± 0.03 ± 0.05 × 10 − 3 , B D s + → η π + = 17.41 ± 0.18 ± 0.27 ± 0.54 × 10 − 3 , B D s + → K + K S 0 = 15.02 ± 0.10 ± 0.27 ± 0.47 × 10 − 3 , B D s + → K S 0 π + = 1.109 ± 0.034 ± 0.023 ± 0.035 × 10 − 3 , B D s + → K + π 0 = 0.748 ± 0.049 ± 0.018 ± 0.035 × 10 − 3 , $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({D}_s^{+}\to {K}^{+}\eta \hbox{'}\right)=\left(2.68\pm 0.17\pm 0.17\pm 0.08\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to \eta \hbox{'}{\pi}^{+}\right)=\left(37.8\pm 0.4\pm 2.1\pm 1.2\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}^{+}\eta \right)=\left(1.62\pm 0.10\pm 0.03\pm 0.05\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to \eta {\pi}^{+}\right)=\left(17.41\pm 0.18\pm 0.27\pm 0.54\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}^{+}{K}_S^0\right)=\left(15.02\pm 0.10\pm 0.27\pm 0.47\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}_S^0{\pi}^{+}\right)=\left(1.109\pm 0.034\pm 0.023\pm 0.035\right)\times {10}^{-3},\\ {}\mathcal{B}\left({D}_s^{+}\to {K}^{+}{\pi}^0\right)=\left(0.748\pm 0.049\pm 0.018\pm 0.035\right)\times {10}^{-3},\end{array}} $$ where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode D s + $$ {D}_s^{+} $$ → K + K − π +. Precision of our measurements is significantly improved compared with that of the current world average values.
- Published
- 2020
- Full Text
- View/download PDF
114. Why is the Indo-Gangetic Plain the region with the largest NH3 column in the globe during pre-monsoon and monsoon seasons?
- Author
-
T. Wang, Y. Song, Z. Xu, M. Liu, T. Xu, W. Liao, L. Yin, X. Cai, L. Kang, H. Zhang, and T. Zhu
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Satellite observations show a global maximum in ammonia (NH3) over the Indo-Gangetic Plain (IGP), with a peak from June to August. However, it has never been explained explicitly. In this study, we investigated the causes of high NH3 loading over the IGP during the pre-monsoon and monsoon seasons using WRF-Chem (Weather Research and Forecasting model coupled to chemistry). The IGP has relatively high NH3 emission fluxes (0.4 t km−2 month−1) due to intensive agricultural activities and high air temperature from June to August. Additionally, low sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions and high air temperature limit the gas-to-particle conversion of NH3, particularly for ammonium nitrate formation. Moreover, the barrier effects of the Himalayas in combination with the surface convergence weaken the horizontal diffusion of NH3. The high NH3 loading over the IGP mainly results from the low gas-to-particle partitioning of NH3 caused by low SO2 and NOx emissions. It contrasts to those in the North China Plain, where high SO2 and NOx emissions promote the conversion of gaseous NH3 into particulate ammonium.
- Published
- 2020
- Full Text
- View/download PDF
115. Impacts of land use change and elevated CO2 on the interannual variations and seasonal cycles of gross primary productivity in China
- Author
-
B. Jia, X. Luo, X. Cai, A. Jain, D. N. Huntzinger, Z. Xie, N. Zeng, J. Mao, X. Shi, A. Ito, Y. Wei, H. Tian, B. Poulter, D. Hayes, and K. Schaefer
- Subjects
Science ,Geology ,QE1-996.5 ,Dynamic and structural geology ,QE500-639.5 - Abstract
Climate change, rising CO2 concentration, and land use and land cover change (LULCC) are primary driving forces for terrestrial gross primary productivity (GPP), but their impacts on the temporal changes in GPP are uncertain. In this study, the effects of the three main factors on the interannual variation (IAV) and seasonal cycle amplitude (SCA) of GPP in China were investigated using 12 terrestrial biosphere models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project. The simulated ensemble mean value of China's GPP between 1981 and 2010, driven by common climate forcing, LULCC and CO2 data, was found to be 7.4±1.8 Pg C yr−1. In general, climate was the dominant control factor of the annual trends, IAV and seasonality of China's GPP. The overall rising CO2 led to enhanced plant photosynthesis, thus increasing annual mean and IAV of China's total GPP, especially in northeastern and southern China, where vegetation is dense. LULCC decreased the IAV of China's total GPP by ∼7 %, whereas rising CO2 induced an increase of 8 %. Compared to climate change and elevated CO2, LULCC showed less contributions to GPP's temporal variation, and its impact acted locally, mainly in southwestern China. Furthermore, this study also examined subregional contributions to the temporal changes in China's total GPP. Southern and southeastern China showed higher contributions to China's annual GPP, whereas southwestern and central parts of China explained larger fractions of the IAV in China's GPP.
- Published
- 2020
- Full Text
- View/download PDF
116. Factors associated with resistance to complications in long-standing type 1 diabetes in China
- Author
-
W Liu, Y Wang, X Han, X Cai, Y Zhu, M Zhang, S Gong, J Li, and L Ji
- Subjects
diabetic retinopathy ,diabetic nephropathy ,type 1 diabetes ,longevity ,Diseases of the endocrine glands. Clinical endocrinology ,RC648-665 - Abstract
Objective: Type 1 diabetes (T1DM) is associated with a higher risk of premature death, but there are factors in certain patients with T1DM that protect them from complications and premature death. These factors had not been identified in no n-Caucasian populations, so we aimed to identify factors that protect against the development of diabetic nephropathy (DN) and diabetic retinopathy (DR) in long -standing T1DM in China. Methods: Ninety-five T1DM patients with >30 years’ duration of diabetes were enrolled in this nationwide study. Differences between groups of patients with and without complications were compared, and multivariable regression analysis was used to evaluate the relationships between candidate protective factors and the development of DN or DR. Results: Thirty of the participants did not have DN and the same amount did not have DR. 6/52 of participants without DN were from a rural area, whereas 11/28 of participants with DN had been born in a rural area (P = 0.005). Systolic blood pressure (SBP) was higher in participants with DN (135 ± 26 mmHg vs 121 ± 13 mmHg; P = 0.002). In participants without DR, 27/30 were married or cohabitating, and only 3/30 were single, never married, or widowed, but for those with prolifera tive DR (PDR), 13/26 had been married (P = 0.003). A rural or urban origin and SBP were associated with DN in the multivariable analysis. Conclusion: we have shown that higher socioeconomic status, indicated by birth in an urban area, and being married or cohabitating, are accompanied by better blood pressure control and a lower risk of microvascular complications in Chin ese patients with long-standing T1DM. These findings illustrate the importance of improving care for patients with T1DM in China.
- Published
- 2020
- Full Text
- View/download PDF
117. A Survey of Handy See-Through Wall Technology
- Author
-
Kangle Mu, Tom H. Luan, Lina Zhu, Lin X. Cai, and Longxiang Gao
- Subjects
Seeing through walls ,machine learning ,motion capture ,wireless ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
The through-wall system, which applies radio technologies to detect objects behind the wall, can find many appealing applications such as public security, life detection, and medical health monitoring. While being studied for years, the recent advances in high-performance handheld computing devices and artificial intelligence have made the through-wall system more practical. In this article, we present a tutorial-like study on the fundamental radio technologies used in the through-wall system, as well as its recent advances. Different from the traditional through-wall radars, this paper mainly focuses on the handy through-wall techniques with low power, narrow bandwidth, lightweight, no contact, and civil use. Advanced through-wall systems and open research issues are also presented.
- Published
- 2020
- Full Text
- View/download PDF
118. P1653: CLINICAL EFFICACY AND SAFETY OF SWITCHING ELTROMBOPAG AND RH-TPO IN PATIENTS WITH IMMUNE THROMBOCYTOPENIA DURING THE COVID-19 PANDEMIC
- Author
-
X. Cai and X.-H. Zhang
- Subjects
Diseases of the blood and blood-forming organs ,RC633-647.5 - Published
- 2022
- Full Text
- View/download PDF
119. Mars Methane Sources in Northwestern Gale Crater Inferred From Back Trajectory Modeling
- Author
-
Y. Luo, M. A. Mischna, J. C. Lin, B. Fasoli, X. Cai, and Y. L. Yung
- Subjects
Mars ,methane ,back trajectory ,MSL ,TLS ,TGO ,Astronomy ,QB1-991 ,Geology ,QE1-996.5 - Abstract
Abstract During its first seven years of operation, the Sample Analysis at Mars Tunable Laser Spectrometer (TLS) on board the Curiosity rover has detected seven methane spikes above a low background abundance in Gale crater. The methane spikes are likely sourced by surface emission within or around Gale crater. Here, we use inverse Lagrangian modeling techniques to identify upstream emission regions on the Martian surface for these methane spikes at an unprecedented spatial resolution. Inside Gale crater, the northwestern crater floor casts the strongest influence on the detections. Outside Gale crater, the upstream regions common to all the methane spikes extend toward the north. The contrasting results from two consecutive TLS methane measurements performed on the same sol point to an active emission site to the west or the southwest of the Curiosity rover on the northwestern crater floor. The observed spike magnitude and frequency also favor emission sites on the northwestern crater floor, unless there are fast methane removal mechanisms at work, or either the methane spikes of TLS or the non‐detections of ExoMars Trace Gas Orbiter cannot be trusted.
- Published
- 2021
- Full Text
- View/download PDF
120. Social determinants of health impacting adherence to diabetic retinopathy examinations
- Author
-
Cindy X Cai, Melissa L McCarthy, Yixuan Li, and Scott L Zeger
- Subjects
Diseases of the endocrine glands. Clinical endocrinology ,RC648-665 - Published
- 2021
- Full Text
- View/download PDF
121. Nature-derived bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis
- Author
-
Z. Li, X. Zhang, Z. Guo, L. Shi, L. Jin, L. Zhu, X. Cai, J. Zhang, Y.S. Zhang, and J. Li
- Subjects
Chitosan ,Silk ,Nanofibers ,5-FU ,Eye disease ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Effectively inhibiting subconjunctival fibrosis remains a challenge in pterygium and antiglaucoma surgery. As one of the superior first-line clinical drugs, 5-fluorouracil (5-FU) possesses certain disadvantages, such as fast drug metabolism and poor dose controllability. The emergence of appropriate pharmaceutical formulation and administration routes provides attractive solutions. In this work, we report the development of a multilevel drug release strategy using two types of nature-derived biomaterials (biocompatible chitosan and silk protein) processed into nanofibers of different size ranges, which was shown to achieve sustained release of 5-FU, toward the unique application of inhibiting subconjunctival fibrosis. In vitro data demonstrated that this system achieved fast 5-FU release during the first 25 days, where the release became relatively stable and lengthy (3 months) afterward. More importantly, the in vivo outcomes also suggested a continuous long-lasting inhibitory effect on subconjunctival myofibroblasts. These results indicated that our nature-derived bionanomaterials served as a promising drug-carrying platform for inhibiting subconjunctival fibrosis by providing sustained release of pharmaceutical compounds thus reducing the administration frequency, which may find broad utility in the treatment of ocular diseases and possibly other biomedical applications.
- Published
- 2021
- Full Text
- View/download PDF
122. Measurement of cross section for e+e−→Ξ0Ξ¯0 near threshold
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M.R. An, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, X.Y. Chai, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, X.C. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Y.L. Fan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, M. Fritsch, C.D. Fu, Y. Gao, Y.G. Gao, I. Garzia, P.T. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, T.T. Han, W.Y. Han, X.Q. Hao, F.A. Harris, N. Hüsken, K.L. He, F.H. Heinsius, C.H. Heinz, T. Held, Y.K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, H.B. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, J.S. Li, Ke Li, L.K. Li, Lei Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L. Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.X. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H. Qi, H.R. Qi, K.H. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H.S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D.C. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, M. Shao, C.P. Shen, H.F. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, K.X. Su, P.P. Su, F.F. Sui, G.X. Sun, H.K. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, J.X. Teng, V. Thoren, W.H. Tian, Y.T. Tian, I. Uman, B. Wang, C.W. Wang, D.Y. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Y.Y. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, F. Weidner, S.P. Wen, L.Z. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, G.F. Xu, Q.J. Xu, W. Xu, X.P. Xu, Y.C. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, S.L. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, L. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, Zeng, Y. Zeng, A.Q. Zhang, B.X. Zhang, Guangyi Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, Shulei Zhang, X.D. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Born cross section ,Effective form factor ,Threshold effect ,Physics ,QC1-999 - Abstract
Using e+e− collision data at ten center-of-mass energies between 2.644 and 3.080 GeV collected with the BESIII detector at BEPCII and corresponding to an integrated luminosity of about 500 pb−1, we measure the cross sections and effective form factors for the process e+e−→Ξ0Ξ¯0 utilizing a single-tag method. A fit to the cross section of e+e−→Ξ0Ξ¯0 with a pQCD-driven power function is performed, from which no significant resonance or threshold enhancement is observed. In addition, the ratio of cross sections for the processes e+e−→Ξ−Ξ¯+ and Ξ0Ξ¯0 is calculated using recent BESIII measurement and is found to be compatible with expectation from isospin symmetry.
- Published
- 2021
- Full Text
- View/download PDF
123. Measurement of the inclusive branching fraction for ψ(3686)→KS0+anything
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, X.C. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, X.L. Gao, Y. Gao, Y.G. Gao, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, T.T. Han, T.Z. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, C.H. Heinz, T. Held, Y.K. Heng, M. Himmelreich, T. Holtmann, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.B. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, W.M. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D.C. Shan, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, Q.Q. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, J.X. Teng, V. Thoren, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, G.F. Xu, J.J. Xu, Q.J. Xu, W. Xu, X.P. Xu, Y.C. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, W. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, Y. Zeng, B.X. Zhang, Guangyi Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
ψ(3686) ,Inclusive branching fraction ,KS0 ,BESIII ,Physics ,QC1-999 - Abstract
Using 5.9 pb−1 of e+e− annihilation data collected at center-of-mass energies from 3.640 to 3.701 GeV with the BESIII detector at the BEPCII Collider, we measure the observed cross sections of e+e−→KS0X (where X=anything). From a fit to these observed cross sections with the sum of continuum and ψ(3686) and J/ψ Breit-Wigner functions and considering initial state radiation and the BEPCII beam energy spread, we obtain for the first time the product of ψ(3686) leptonic width and inclusive decay branching fraction Γψ(3686)eeB(ψ(3686)→KS0X)=(373.8±6.7±20.0) eV, and assuming Γψ(3686)ee is (2.33±0.04) keV from PDG value, we measure B(ψ(3686)→KS0X)=(16.04±0.29±0.90)%, where the first uncertainty is statistical and the second is systematic.
- Published
- 2021
- Full Text
- View/download PDF
124. Beamforming Design for Max-Min Fair SWIPT in Green Cloud-RAN with Wireless Fronthaul.
- Author
-
Zhao Chen 0002, Haisheng Xu, Lin X. Cai, and Yu Cheng 0003
- Published
- 2018
- Full Text
- View/download PDF
125. A Stochastic Geometry Analysis of Energy Harvesting in Large Scale Wireless Networks.
- Author
-
Ziru Chen, Zhao Chen 0002, Lin X. Cai, Yu Cheng 0003, and Ruoting Gong
- Published
- 2018
- Full Text
- View/download PDF
126. A Performance Comparison of LBE Based Coexistence Protocols for LAA and Wi-Fi.
- Author
-
Mengqi Han, Sami Khairy, Zhao Chen 0002, Lin X. Cai, and Yu Cheng 0003
- Published
- 2018
- Full Text
- View/download PDF
127. A Hybrid Approach for Efficient Wireless Information and Power Transfer in Green C-RAN.
- Author
-
Xu Li, Zhao Chen 0002, Aurobinda Laha, Ziru Chen, Yu Cheng 0003, and Lin X. Cai
- Published
- 2018
- Full Text
- View/download PDF
128. Energy-Efficient Beamforming for Massive MIMO with Inter-Cell Interference and Inaccurate CSI.
- Author
-
Shuai Zhang 0013, Lu Liu 0004, Yu Cheng 0003, Xianghui Cao, and Lin X. Cai
- Published
- 2018
- Full Text
- View/download PDF
129. New Bridge to Cloud: An Ultra-Dense LEO Assisted Green Computation Offloading Approach
- Author
-
Zhixuan Tang, Kai Yu, Guannan Yang, Lin X. Cai, and Haibo Zhou
- Subjects
Computer Networks and Communications ,Renewable Energy, Sustainability and the Environment - Published
- 2023
130. Measurement of proton electromagnetic form factors in the time-like region using initial state radiation at BESIII
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M.R. An, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, X.C. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Y.L. Fan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, M. Fritsch, C.D. Fu, Y. Gao, Y.G. Gao, I. Garzia, P.T. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, T.T. Han, W.Y. Han, X.Q. Hao, F.A. Harris, N. Hüsken, K.L. He, F.H. Heinsius, C.H. Heinz, T. Held, Y.K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, H.B. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, J.S. Li, Ke Li, L.K. Li, Lei Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, D.X. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L. Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.X. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H. Qi, H.R. Qi, K.H. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H.S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D.C. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, M. Shao, C.P. Shen, H.F. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, K.X. Su, P.P. Su, F.F. Sui, G.X. Sun, H.K. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, J.X. Teng, V. Thoren, W.H. Tian, I. Uman, B. Wang, C.W. Wang, D.Y. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Y.Y. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, G.F. Xu, Q.J. Xu, W. Xu, X.P. Xu, Y.C. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, S.L. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, L. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, X. Zeng, Y. Zeng, A.Q. Zhang, B.X. Zhang, Guangyi Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L.Q. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, Shulei Zhang, X.D. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Proton ,Electromagnetic form factors ,Initial state radiation ,BESIII ,Physics ,QC1-999 - Abstract
The electromagnetic process e+e−→pp¯ is studied with the initial-state-radiation technique using 7.5 fb−1 of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the effective form factor of the proton are measured from the production threshold to 3.0 GeV/c2 using the pp¯ invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
- Published
- 2021
- Full Text
- View/download PDF
131. Measurement of the absolute branching fraction of Λc+→pKS0η decays
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, Anita, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, J.P. Dai, X.C. Dai, A. Dbeyssi, R.B. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, X.L. Gao, Y. Gao, Y.G. Gao, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, T.T. Han, T.Z. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, C.H. Heinz, T. Held, Y.K. Heng, M. Himmelreich, T. Holtmann, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.B. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Z.B. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, L.Z. Liao, J. Libby, C.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, Y.F. Long, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D.C. Shan, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, Q.Q. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, G.F. Xu, J.J. Xu, Q.J. Xu, W. Xu, X.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, W. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, Guangyi Zhang, H.H. Zhang, H.Y. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, X.L. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Charmed baryon ,Λc+ decays ,Absolute branching fraction ,BESIII ,Physics ,QC1-999 - Abstract
Based on 586 pb−1 of e+e− annihilation data collected at a center-of-mass energy of s=4.6GeV with the BESIII detector at the BEPCII collider, the absolute branching fraction of Λc+→pKS0η decays is measured for the first time to be B(Λc+→pKS0η)=(0.414±0.084±0.028)%, where the first uncertainty is statistical and the second is systematic. The result is compatible with a previous CLEO result on the relative branching fraction B(Λc+→pKS0η)B(Λc+→pK−π+), and consistent with theoretical predictions of SU(3) flavor symmetry.
- Published
- 2021
- Full Text
- View/download PDF
132. Hyperpolarized relaxometry based nuclear T 1 noise spectroscopy in diamond
- Author
-
A. Ajoy, B. Safvati, R. Nazaryan, J. T. Oon, B. Han, P. Raghavan, R. Nirodi, A. Aguilar, K. Liu, X. Cai, X. Lv, E. Druga, C. Ramanathan, J. A. Reimer, C. A. Meriles, D. Suter, and A. Pines
- Subjects
Science - Abstract
Nuclear spins in diamond have applications in quantum technologies and NMR methods but their performance can be limited by relaxation processes that are difficult to characterise. Ajoy et al. develop a T 1 noise spectroscopy method to identify the dominant relaxation channel and propose a mitigation strategy.
- Published
- 2019
- Full Text
- View/download PDF
133. High-time-resolution source apportionment of PM2.5 in Beijing with multiple models
- Author
-
Y. Liu, M. Zheng, M. Yu, X. Cai, H. Du, J. Li, T. Zhou, C. Yan, X. Wang, Z. Shi, R. M. Harrison, Q. Zhang, and K. He
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Beijing has suffered from heavy local emissions as well as regional transport of air pollutants, resulting in severe atmospheric fine-particle (PM2.5) pollution. This study developed a combined method to investigate source types of PM2.5 and its source regions during winter 2016 in Beijing, which include the receptor model (positive matrix factorization, PMF), footprint and an air quality model. The PMF model was performed with high-time-resolution measurements of trace elements, water soluble ions, organic carbon and elemental carbon using online instruments during the wintertime campaign of the Air Pollution and Human Health in a Chinese Megacity – Beijing (APHH-Beijing) program in 2016. Source types and their contributions estimated by PMF model using online measurements were linked with source regions identified by the footprint model, and the regional transport contribution was estimated by an air quality model (the Nested Air Quality Prediction Model System, NAQPMS) to analyze the specific sources and source regions during haze episodes. Our results show that secondary and biomass-burning sources were dominated by regional transport, while the coal combustion source increased with local contribution, suggesting that strict control strategies for local coal combustion in Beijing and a reduction of biomass-burning and gaseous precursor emissions in surrounding areas were essential to improve air quality in Beijing. The combination of PMF with footprint results revealed that secondary sources were mainly associated with southern footprints (53 %). The northern footprint was characterized by a high dust source contribution (11 %), while industrial sources increased with the eastern footprint (10 %). The results demonstrated the power of combining receptor model-based source apportionment with other models in understanding the formation of haze episodes and identifying specific sources from different source regions affecting air quality in Beijing.
- Published
- 2019
- Full Text
- View/download PDF
134. Measurement of the phase between strong and electromagnetic amplitudes of J/ψ decays
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F.F. An, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, P.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, S. Gu, Y.T. Gu, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuessner, M. Kuhlmann, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, S. Leiber, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, K.J. Li, Kang Li, Ke Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, G. Morello, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, J.J. Song, W.M. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, Meng Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, X. Xia, Y. Xia, D. Xiao, H. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.X. Zhou, J. Zhu, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9±3.6)∘ or (−84.7±3.1)∘ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η→π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ→2(π+π−)π0 is measured to be (4.73±0.44)% or (4.85±0.45)%, and the branching fraction of J/ψ→ηπ+π− is measured to be (3.78±0.68)×10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics. Keywords: Phase, Strong amplitude, Electromagnetic amplitude, J/ψ decay, BESIII
- Published
- 2019
- Full Text
- View/download PDF
135. Energy deviation study of BEMS at BEPCII
- Author
-
J.Y. Zhang, X. Cai, X.H. Mo, C.D. Fu, G.Y. Tang, M.N. Achasov, N.Yu. Muchnoi, I.B. Nikolaev, and F.A. Harris
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The beam energy measurement system (BEMS) at the upgraded Beijing Electron-Positron Collider (BEPCII) is designed to provide beam energy value with the relative error at the level of 5×10−5. The obvious energy deviation found during J/ψ resonance scan in 2012 leads to great amount of investigations on both BEPCII and BEMS sides. The reasons causing such an unexpected difference are figured out, which include the neutron damage to HPGe detector, the leakage of RF cavity, and the background from Linac. Based on a series of measures, the ψ(3686) line shape scan is designed and performed, the experimental result indicates that BEMS can measure the beam energy with the claimed accuracy. The afterward performance of BEMS is smooth and stable, and BEMS will play a crucial role in the following high accurate experiments.
- Published
- 2019
- Full Text
- View/download PDF
136. Effects of turbulence structure and urbanization on the heavy haze pollution process
- Author
-
Y. Ren, H. Zhang, W. Wei, B. Wu, X. Cai, and Y. Song
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
In this paper, an automated algorithm is developed, which is used to identify the spectral gap during the heavy haze pollution process, reconstruct acquired data, and obtain pure turbulence data. Comparisons of the reconstructed turbulent flux and eddy covariance (EC) flux show that there are overestimations regarding the exchange between the surface and the atmosphere during heavy haze pollution episodes. After reconstruction via the automated algorithm, pure turbulence data can be obtained. We introduce a definition to characterize the local intermittent strength of turbulence (LIST). The trend in the LIST during pollution episodes shows that when pollution is more intense, the LIST is smaller, and intermittency is stronger; when pollution is weaker, the LIST is larger, and intermittency is weaker. At the same time, the LIST at the city site is greater than at the suburban site, which means that intermittency over the complex city area is weaker than over the flat terrain area. Urbanization seems to reduce intermittency during heavy haze pollution episodes, which means that urbanization reduces the degree of weakening in turbulent exchange during pollution episodes. This result is confirmed by comparing the average diurnal variations in turbulent fluxes at urban and suburban sites during polluted and clean periods. The sensible heat flux, latent heat flux, momentum flux, and turbulent kinetic energy (TKE) in urban and suburban areas are all affected when pollution occurs. Material and energy exchanges between the surface and the atmosphere are inhibited. Moreover, the impact of the pollution process on suburban areas is much greater than on urban areas. The turbulent effects caused by urbanization seem to help reduce the consequences of pollution under the same weather and pollution source condition, because the turbulence intermittency is weaker, and the reduction in turbulence exchange is smaller over the urban underlying surface.
- Published
- 2019
- Full Text
- View/download PDF
137. The influence of particle composition upon the evolution of urban ultrafine diesel particles on the neighbourhood scale
- Author
-
I. Nikolova, X. Cai, M. S. Alam, S. Zeraati-Rezaei, J. Zhong, A. R. MacKenzie, and R. M. Harrison
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
A recent study demonstrated that diesel particles in urban air undergo evaporative shrinkage when advected to a cleaner atmosphere (Harrison et al., 2016). We explore, in a structured and systematic way, the sensitivity of nucleation-mode diesel particles (diameter < 30 nm) to changes in particle composition, saturation vapour pressure, and the mass accommodation coefficient. We use a multicomponent aerosol microphysics model based on surrogate molecule (C16−C32 n-alkane) volatilities. For standard atmospheric conditions (298 K, 1013.25 hPa), and over timescales (ca. 100 s) relevant for dispersion on the neighbourhood scale (up to 1 km), the choice of a particular vapour pressure dataset changes the range of compounds that are appreciably volatile by two to six carbon numbers. The nucleation-mode peak diameter, after 100 s of model runtime, is sensitive to the vapour pressure parameterisations for particles with compositions centred on surrogate molecules between C22H46 and C24H50. The vapour pressure range, derived from published data, is between 9.23 × 10−3 and 8.94 × 10−6 Pa for C22H46 and between 2.26 × 10−3 and 2.46 × 10−7 Pa for C24H50. Therefore, the vapour pressures of components in this range are critical for the modelling of nucleation-mode aerosol dynamics on the neighbourhood scale and need to be better constrained. Laboratory studies have shown this carbon number fraction to derive predominantly from engine lubricating oil. The accuracy of vapour pressure data for other (more and less volatile) components from laboratory experiments is less critical. The influence of a core of non-volatile material is also considered; non-volatile core fractions of more than 5 % are inconsistent with the field measurements that we test the model against. We consider mass accommodation coefficient values less than unity and find that model runs with more volatile vapour pressure parameterisations and lower accommodation coefficients are similar to runs with less volatile vapour pressure parameterisations and higher accommodation coefficients. The new findings of this study may also be used to identify semi-volatile organic compound (SVOC) compositions that play dominating roles in the evaporative shrinkage of the nucleation mode observed in field measurements (Dall'Osto et al., 2011).
- Published
- 2018
- Full Text
- View/download PDF
138. Effect of pulmonary function on bone mineral density in the United States: results from the NHANES 2007–2010 study
- Author
-
Z. Lin, G. Shi, X. Liao, W. Liu, X. Luo, H. Zhan, and X. Cai
- Subjects
Endocrinology, Diabetes and Metabolism - Published
- 2023
139. Measurements of Σ+ and Σ− time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Anita, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, J.P. Dai, X.C. Dai, A. Dbeyssi, R.B. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, X.L. Gao, Y. Gao, Y.G. Gao, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, T.T. Han, T.Z. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, M. Himmelreich, T. Holtmann, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.B. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Z.B. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, L.Z. Liao, J. Libby, C.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, Y.F. Long, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, C. Schnier, K. Schoenning, D.C. Shan, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, Q.Q. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, G.F. Xu, J.J. Xu, Q.J. Xu, W. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, W. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, Guangyi Zhang, H.H. Zhang, H.Y. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, X.L. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
BESIII ,Σ hyperon ,Cross section ,Electromagnetic form factor ,Physics ,QC1-999 - Abstract
The Born cross sections of the e+e−→Σ+Σ¯− and e+e−→Σ−Σ¯+ processes are determined for center-of-mass energy from 2.3864 to 3.0200 GeV with the BESIII detector. The cross section lineshapes can be described properly by a pQCD function and the resulting ratio of effective form factors for the Σ+ and Σ− is consistent with 3. In addition, ratios of the Σ+ electric and magnetic form factors, |GE/GM|, are obtained at three center-of-mass energies through an analysis of the angular distributions. These measurements, which are studied for the first time in the off-resonance region, provide precision experimental input for understanding baryonic structure. The observed new features of the Σ± form factors require more theoretical discussions for the hyperons.
- Published
- 2021
- Full Text
- View/download PDF
140. Biomaterial-assisted gene therapy for translational approaches to treat musculoskeletal disorders
- Author
-
J.K. Venkatesan, A. Rey-Rico, W. Meng, X. Cai, F. Pons, L. Lebeau, V. Migonney, H. Madry, and M. Cucchiarini
- Subjects
Orthopedic diseases ,Genetic transfer ,Tissue engineering ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Biomaterial-assisted gene therapy is a promising strategy for the treatment of various musculoskeletal disorders such as those concerning the articular cartilage, bones, tendons and ligaments, and meniscus as it can deliver candidate gene sequences in a spatially and temporally controlled manner in sites of tissue damage over prolonged periods of time that may be required to durably enhance the specific, natural repair mechanisms in vivo in direct, non-invasive procedures that avoid the arduous manipulation and implantation of patient-dependent cells genetically modified in vitro. In the present work, we provide an overview of the most up-to-date approaches and outcomes in experimental, relevant models of such disorders in vivo using biomaterial-guided gene transfer that may be employed in a near future to treat patients during a clinical intervention as a means to achieve an effective, safe, and persistent translational healing of musculoskeletal injuries.
- Published
- 2021
- Full Text
- View/download PDF
141. A Hybrid-LBT MAC with Adaptive Sleep for LTE LAA Coexisting with Wi-Fi over Unlicensed Band.
- Author
-
Sami Khairy, Lin X. Cai, Yu Cheng 0003, Zhu Han 0001, and Hangguan Shan
- Published
- 2017
- Full Text
- View/download PDF
142. Capacity Analysis of Delay-Sensitive Traffic over LTE Networks in Unlicensed Spectrum.
- Author
-
Guoxiang Li, Hangguan Shan, Aiping Huang, Lin X. Cai, and Fen Hou
- Published
- 2017
- Full Text
- View/download PDF
143. QoS-Based Incentive Mechanism for Mobile Data Offloading.
- Author
-
Yanguang Zhang, Fen Hou, Lin X. Cai, and Jun Huang 0002
- Published
- 2017
- Full Text
- View/download PDF
144. Online SLA-Aware Multi-Resource Allocation for Deadline Sensitive Jobs in Edge-Clouds.
- Author
-
Bo Yin 0001, Yu Cheng 0003, Lin X. Cai, and Xianghui Cao
- Published
- 2017
- Full Text
- View/download PDF
145. Enabling efficient multi-channel bonding for IEEE 802.11ac WLANs.
- Author
-
Sami Khairy, Mengqi Han, Lin X. Cai, Yu Cheng 0003, and Zhu Han 0001
- Published
- 2017
- Full Text
- View/download PDF
146. Distributed resource sharing in fog-assisted big data streaming.
- Author
-
Bo Yin 0001, Wenlong Shen, Yu Cheng 0003, Lin X. Cai, and Qing Li 0063
- Published
- 2017
- Full Text
- View/download PDF
147. Energy-throughput tradeoff in sustainable Cloud-RAN with energy harvesting.
- Author
-
Zhao Chen 0002, Ziru Chen, Lin X. Cai, and Yu Cheng 0003
- Published
- 2017
- Full Text
- View/download PDF
148. Deep learning based optimization in wireless network.
- Author
-
Lu Liu 0004, Yu Cheng 0003, Lin X. Cai, Sheng Zhou 0001, and Zhisheng Niu
- Published
- 2017
- Full Text
- View/download PDF
149. Joint Resource Allocation for LTE over Licensed and Unlicensed Spectrum.
- Author
-
Xiaojian Zhen, Hangguan Shan, Guanding Yu, Yu Cheng 0003, Lin X. Cai, and Aiping Huang
- Published
- 2017
- Full Text
- View/download PDF
150. Performance Analysis of Video Services over WLANs with Channel Bonding.
- Author
-
Mengqi Han, Sami Khairy, Lin X. Cai, Yu Cheng 0003, and Fen Hou
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.