101. Mono- and Bis-Phosphine Promoted Incorporation of Boron, Nitrogen, and Phosphorus into Heterocycles via Staudinger Reactions of Borafluorene Azides
- Author
-
Tra, Bi Youan E., Molino, Andrew, Hollister, Kimberly K., Sarkar, Samir Kumar, Dickie, Diane A., Wilson, David J. D., and Gilliard, Robert J.
- Abstract
We report the synthesis and characterization of a series of BNP-incorporated borafluorenate heterocycles formed via thermolysis reactions of pyridylphosphine and bis(phosphine)-coordinated borafluorene azides. The use of diphenyl-2-pyridylphosphine (PyPh2P), trans-1,2-bis(diphenylphosphino)ethylene (Ph2P(H)C═C(H)PPh2), and bis(diphenylphosphino)methane (Ph2PC(H2)PPh2) as stabilizing ligands resulted in Staudinger reactions to form complex heterocycles with four- (BN2P, BNPC, P2N2) and five-membered (BNP2C and BN2PC) rings, which were successfully isolated and fully characterized by multinuclear NMR and X-ray crystallography. However, when bis(diphenylphosphino)benzene (Ph2P-Ph-PPh2) was used as the ligand in a reaction with 9-bromo-9-borafluorene (BF-Br), due to the close proximity of the donor P atoms, the diphosphine-stabilized borafluoronium ion with an unusual borafluorene dibromide anion was formed. Reaction of the borafluoronium ion with trimethylsilyl azide left the cation intact, and the dibromide anion was substituted by a diazide. Density functional theory calculations were used to provide mechanistic insight into the formation of these new boracyclic compounds. This work highlights a new method in which donor phosphine ligands may be used to promote dimerization, cyclization, and ring contraction reactions to produce boracycles via Staudinger reactions.
- Published
- 2024
- Full Text
- View/download PDF