201 results on '"Tzetzis D"'
Search Results
102. Internal friction of epoxy resin composites reinforced with carboxyl-Terminated butadieneacrylonitrile (CTBN) rubber
- Author
-
Mansour, G., Konstantinos Tsongas, and Tzetzis, D.
103. Pneumatic cylinder design using cad-based programming
- Author
-
Kyratsis, P., Anastasios Tzotzis, Tzetzis, D., and Sapidis, N.
104. CAD based product design: A case study
- Author
-
Kyratsis, P., Gabis, E., Anastasios Tzotzis, Tzetzis, D., and Kakoulis, K.
105. Static and fatigue properties of 3D printed continuous carbon fiber nylon composites
- Author
-
Giannakis, E., Christos Koidis, Kyratsis, P., and Tzetzis, D.
106. A nanomechanical approach on the measurement of the elastic properties of epoxy reinforced carbon nanotube nanocomposites
- Author
-
Mansour, G., Tzetzis, D., and Konstantinos Bouzakis
- Subjects
Microscopy ,Nanoindentation Testing ,lcsh:Mechanical engineering and machinery ,Elastic Properties ,Multiwall Carbon Nanotubes ,lcsh:TJ1-1570 ,Epoxy Nanocomposites - Abstract
The mechanical behavior of nanocomposite materials with multiwallcarbon nanotube ( MWCNT ) reinforcements is investigated in the present paper. Epoxy nanocomposites with different weight percentages of carbon nanotubes have been characterized following tensile tests and nanoindentations. The objective of this work was to investigate the efficiency of the reinforcement provided by nanotubes and to examine the agreement between the mechanical properties of the epoxynanocomposites obtained via a macroscale and nanoscale experimentalmethods. Higher increase in modulus was accomplished at weight fraction of nanotube reinforcement of 1 %. The modulus as measured by the tensile tests differed an average of 18% with the results obtained from the nanoindentations, however by utilizing a proper calibration method the resulting data were corrected to only a 3% difference. The modulus results obtained from the experiments were compared with the Halpin - Tsai model and with the Thostenson - Chou model accounting for the outer layer interactions of the nanotube with the hosting matrix. A relatively good agreement was found between the models and the experiments.
107. Engineering applications using CAD based application programming interface
- Author
-
Tzotzis Anastasios, Garcia-Hernandez Cesar, Huertas-Talon Jose-Luis, Tzetzis Dimitrios, and Kyratsis Panagiotis
- Subjects
Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
Automating the design process of a product or a system can provide engineers and designers with many benefits. As such, repeatable tasks that are time consuming can be handled automatically and with minimal human attention. This is achieved by using the API (Application Programmable Interface) of CAD systems in order to create macros or even develop software applications. The present paper deals with an application that has been developed with the API of a general purposes CAD system. This application automates the design process of a standard pneumatic double acting cylinder based on the appropriate inserted parameters (ISO 15552).The design process begins with the creation of a series of components developed as solids, and extends to the extraction of basic attributes and properties from the complete mechanical assembly. Finally, the assembled models and the extracted data can be used to further study the design of the pneumatic double acting cylinder. It is expected in the future to expand the features of the presented application in order to automate the design process of other related mechanical systems.
- Published
- 2017
- Full Text
- View/download PDF
108. Laser scanning and CAD conversion accuracy correction of a highly curved engineering component using a precision tactile measuring system
- Author
-
Giannelis Athanasios, Symeonidou Ioanna, Tzetzis Dimitrios, Kaisarlis George, and Kyratsis Panagiotis
- Subjects
Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
Impellers are used in various mechanical applications and they usually operate under severe conditions. Very often a replacement of an impeller is required after certain operation hours due to material failure. Since it is a critical and expensive spare part, accurate manufacturing, following the design requirements of the part, is necessary. In order to avoid any dimensional manufacturing defects, quality control procedures are used based on reverse engineering. The aim of the current paper was to evaluate the overall accuracy of the reverse engineering procedure, when a laser scanner is used for digital data capturing. The specified accuracy of the laser scanner was of ±0.084mm and the scanned data were converted to a Computer Aided Design (CAD) file using commercial design software. In order to assess the accuracy of the laser scanning and the CAD conversion procedure, a highly accurate coordinate measuring machine was used with a touch trigger probe and specified accuracy of ±0.006 mm. The results have shown that the deviation produced by the laser scanning and the associated reverse engineering methodology was up to 1mm, mostly observed at the edges of the freeform surfaces. It was concluded that such large deviations are caused from the inaccuracy of the laser scanner, possible errors created by the mesh – polygonal model creation, but most importantly from the errors when creating the B-splines.
- Published
- 2017
- Full Text
- View/download PDF
109. 3D-printed composite bone bricks for large bone tissue applications
- Author
-
Bahattin Koc, Gordon Blunn, Glen Cooper, Andrew Weightman, Evangelos Daskalakis, Paulo Jorge Da Silva Bartolo, Edera-Elena Dinea, Fengyuan Liu, Anıl Ahmet Acar, Mansour, G., Tzetzis, D., and Kyratsis, P.
- Subjects
3d printed ,Materials science ,Composite number ,0211 other engineering and technologies ,02 engineering and technology ,Engineering (General). Civil engineering (General) ,Manufacturing systems ,Bone tissue ,020303 mechanical engineering & transports ,medicine.anatomical_structure ,0203 mechanical engineering ,021105 building & construction ,medicine ,Extrusion ,TA1-2040 ,Composite material ,Porosity - Abstract
This study investigates the use of low cost, customizable, biodegradable, polymer-ceramic composite porous structures (bone bricks) for large bone tissue regeneration. Different ceramic materials (hydroxyapatite (HA), β-tri-calcium phosphate (TCP) and Bioglass (45S5) were mixed with poly-ε-caprolactone (PCL). Bone bricks with different material compositions were produced using an extrusion-based additive manufacturing system. Produced bone bricks were morphologically and mechanically assessed. Results allowed to establish a correlation between scaffolds architecture and material composition and scaffolds performance. Reinforced scaffolds showed improved mechanical properties. Best mechanical properties were obtained with PCL/TCP bone bricks and topologies based on 38 double zig zag filaments and 14 spirals.
- Published
- 2020
- Full Text
- View/download PDF
110. Development of mucoadhesive 3D-printed Carbopol/Eudragit/SNAC tablets for the oral delivery of enoxaparin: In vitro and ex vivo evaluation.
- Author
-
Chatzitaki AT, Patila M, Haralampos S, Vizirianakis IS, Rekka EA, Tzetzis D, Spyros A, Zacharis CK, Ritzoulis C, and Fatouros DG
- Subjects
- Caco-2 Cells, Humans, Administration, Oral, Acrylic Resins chemistry, Animals, Polymethacrylic Acids chemistry, Intestinal Mucosa metabolism, Male, Drug Delivery Systems methods, Adhesiveness, Permeability, Polyvinyls chemistry, Anticoagulants administration & dosage, Anticoagulants pharmacokinetics, Anticoagulants chemistry, Printing, Three-Dimensional, Drug Liberation, Tablets, Enoxaparin administration & dosage, Enoxaparin pharmacokinetics, Enoxaparin chemistry
- Abstract
3D-printed dosage forms comprised of Carbopol and Eudragit were fabricated through semi-solid extrusion, combining Enoxaparin (Enox) and the permeation enhancer SNAC in a single-step process without subsequent post-processing. Inks were characterized using rheology and Fourier-transform infrared (FTIR) spectroscopy. The stability of Enox in the fabricated dosage forms was assessed by means of Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) analysis. In vitro release studies revealed the release of Enox in a sustained manner, whereas ex vivo experiments demonstrated the mucoadhesive properties of the 3D-printed dosage forms and their ability to enhance Enox permeability across intestinal mucosa. Cellular assays (CCK-8 assay) revealed a dose- and time-dependent response following incubation with the 3D-printed dosage forms. The encapsulation of SNAC in the 3D-printed dosage forms demonstrated their capacity to increase the transcellularly transport of macromolecule across Caco-2 monolayer in a reversible manner, as confirmed by Transepithelial Resistance (TEER) measurements., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
111. Fabrication of Hybrid Coated Microneedles with Donepezil Utilizing Digital Light Processing and Semisolid Extrusion Printing for the Management of Alzheimer's Disease.
- Author
-
Monou PK, Andriotis EG, Saropoulou E, Tzimtzimis E, Tzetzis D, Komis G, Bekiari C, Bouropoulos N, Demiri E, Vizirianakis IS, and Fatouros DG
- Subjects
- Animals, Mice, NIH 3T3 Cells, Skin Absorption drug effects, Skin metabolism, Skin drug effects, Drug Liberation, Transdermal Patch, Humans, Donepezil administration & dosage, Donepezil chemistry, Needles, Alzheimer Disease drug therapy, Printing, Three-Dimensional, Administration, Cutaneous, Drug Delivery Systems methods, Cholinesterase Inhibitors administration & dosage, Cholinesterase Inhibitors pharmacokinetics, Cholinesterase Inhibitors chemistry
- Abstract
Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material. Physiochemical characterization of the coated MNs confirmed the successful incorporation of donepezil as well as the stability and suitability of the materials for transdermal delivery. Optical microscopy and SEM studies validated the uniform weight distribution and precise dimensions of the MN arrays, while mechanical testing ensured the MNs' robustness, ensuring efficient skin penetration. In vitro studies were conducted to evaluate the produced transdermal patches, indicating their potential use in clinical treatment. Permeation studies revealed a significant increase in DN permeation compared to plain coating material, affirming the effectiveness of the MNs in enhancing transdermal drug delivery. Confocal laser scanning microscopy (CLSM) elucidated the distribution of the API, within skin layers, demonstrating sustained drug release and transcellular transport pathways. Finally, cell studies were also conducted on NIH3T3 fibroblasts to evaluate the biocompatibility and safety of the printed objects for transdermal applications.
- Published
- 2024
- Full Text
- View/download PDF
112. Tailored Sticky Solutions: 3D-Printed Miconazole Buccal Films for Pediatric Oral Candidiasis.
- Author
-
Chachlioutaki K, Iordanopoulou A, Katsamenis OL, Tsitsos A, Koltsakidis S, Anastasiadou P, Andreadis D, Economou V, Ritzoulis C, Tzetzis D, Bouropoulos N, Xenikakis I, and Fatouros D
- Subjects
- Administration, Buccal, Humans, Zein chemistry, Mouth Mucosa metabolism, Mouth Mucosa microbiology, Povidone chemistry, Permeability, Drug Delivery Systems methods, Animals, Chemistry, Pharmaceutical methods, Child, Miconazole administration & dosage, Miconazole chemistry, Miconazole pharmacokinetics, Antifungal Agents administration & dosage, Antifungal Agents chemistry, Antifungal Agents pharmacokinetics, Printing, Three-Dimensional, Candidiasis, Oral drug therapy, Drug Liberation
- Abstract
In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity., (© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.)
- Published
- 2024
- Full Text
- View/download PDF
113. Nanoindentation Creep Behavior of Additively Manufactured H13 Steel by Utilizing Selective Laser Melting Technology.
- Author
-
Giarmas E, Tzimtzimis EK, Kladovasilakis N, Tzovaras D, and Tzetzis D
- Abstract
Nowadays, H13 hot work steel is a commonly used hot work die material in the industry; however, its creep behavior for additively manufactured H13 steel parts has not been widely investigated. This research paper examines the impact of volumetric energy density (VED), a critical parameter in additive manufacturing (AM), and the effect of post heat-treatment nitrification on the creep behavior of H13 hot work tool steel, which is constructed through selective laser melting (SLM), which is a powder bed fusion process according to ISO/ASTM 52900:2021. The study utilizes nanoindentation tests to investigate the creep response and the associated parameters such as the steady-state creep strain rate. Measurements and observations taken during the holding phase offer a valuable understanding of the behavior of the studied material. The findings of this study highlight a substantial influence of both VED and nitrification on several factors including hardness, modulus of elasticity, indentation depth, and creep displacement. Interestingly, the creep strain rate appears to be largely unaltered by these parameters. The study concludes with the observation that the creep stress exponent ( n ) shows a decreasing trend with an increase in VED and the application of nitrification treatment.
- Published
- 2024
- Full Text
- View/download PDF
114. Effect of Nanoceria Suspension Addition on the Physicochemical and Mechanical Properties of Hybrid Organic-Inorganic Hydroxyapatite Composite Scaffolds.
- Author
-
Gkomoza P, Kitsou I, Koltsakidis S, Tzetzis D, Karydis-Messinis A, Zafeiropoulos NE, Gerodimou F, Kollia E, Valdramidis V, and Tsetsekou A
- Abstract
In the current study, the synthesis of hydroxyapatite-ceria (HAP-CeO
2 ) scaffolds is attempted through a bioinspired chemical approach. The utilized colloidal CeO2 suspension presents antifungal activity against the Aspergillus flavus and Aspergillus fumigatus species at concentrations higher than 86.1 ppm. Three different series of the composite HAP-CeO2 suspensions are produced, which are differentiated based on the precursor suspension to which the CeO2 suspension is added and by whether this addition takes place before or after the formation of the hydroxyapatite phase. Each of the series consists of three suspensions, in which the pure ceria weight reaches 4, 5, and 10% (by mass) of the produced hydroxyapatite, respectively. The characterization showed that the 2S series's specimens present the greater alteration towards their viscoelastic properties. Furthermore, the 2S series's sample with 4% CeO2 presents the best mechanical response. This is due to the growth of needle-like HAP crystals during lyophilization, which-when oriented perpendicular to the direction of stress application-enhance the resistance of the sample to deformation. The 2S series's scaffolds had an average pore size equal to 100 μm and minimum open porosity 89.5% while simultaneously presented the lowest dissolution rate in phosphate buffered saline.- Published
- 2024
- Full Text
- View/download PDF
115. Innovative Design of a 3D Printed Esophageal Stent Inspired by Nature: Mitigating Migration Challenges in Palliative Esophageal Cancer Therapy.
- Author
-
Profitiliotis T, Koltsakidis S, Tsongas K, and Tzetzis D
- Abstract
Esophageal cancer is a complex and challenging tumor to treat, with esophageal stenting being used as a palliative measure to improve the quality of life of patients. Self-expandable metal stents (SEMS), self-expandable plastic stents (SEPS), and biodegradable stents are the most commonly used types of stents. However, complications can arise, such as migration, bleeding, and perforation. To address issues of migration, this study developed a novel 3D printed bioinspired esophageal stent utilizing a highly flexible and ductile TPU material. The stent was designed to be self-expanding and tubular with flared ends to provide secure anchorage at both the proximal and distal ends of the structure. Suction cups were strategically placed around the shaft of the stent to prevent migration. The stent was evaluated through compression-recovery, self-expansion, and anti-migration tests to evaluate its recovery properties, self-expansion ability, and anchoring ability, respectively. The results indicated that the novel stent was able to recover its shape, expand, keep the esophagus open, and resist migration, demonstrating its potential for further research and clinical applications. Finite element analysis (FEA) was leveraged to analyze the stent's mechanical behavior, providing insights into its structural integrity, self-expansion capability, and resistance against migration. These results, supported by FEA, highlight the potential of this innovative stent for further research and its eventual application in preclinical settings.
- Published
- 2024
- Full Text
- View/download PDF
116. Evaluation of 3D-Printed Solid Microneedles Coated with Electrosprayed Polymeric Nanoparticles for Simultaneous Delivery of Rivastigmine and N-Acetyl Cysteine.
- Author
-
Monou PK, Andriotis E, Tzetzis D, Tzimtzimis E, Panteris E, Andreadis D, Demiri E, Vizirianakis IS, and Fatouros DG
- Subjects
- Humans, Drug Delivery Systems, Skin metabolism, Polylactic Acid-Polyglycolic Acid Copolymer chemistry, Cell Survival drug effects, Acetylcysteine chemistry, Acetylcysteine pharmacology, Rivastigmine chemistry, Rivastigmine pharmacology, Rivastigmine administration & dosage, Printing, Three-Dimensional, Needles, Nanoparticles chemistry, Biocompatible Materials chemistry, Biocompatible Materials pharmacology, Materials Testing, Particle Size
- Abstract
In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo . Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.
- Published
- 2024
- Full Text
- View/download PDF
117. Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications.
- Author
-
Stanley J, Xanthopoulou E, Finšgar M, Zemljič LF, Klonos PA, Kyritsis A, Koltsakidis S, Tzetzis D, Lambropoulou DA, Baciu D, Steriotis TA, Charalambopoulou G, and Bikiaris DN
- Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO
2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.- Published
- 2023
- Full Text
- View/download PDF
118. Fabrication of 3D Printed Hollow Microneedles by Digital Light Processing for the Buccal Delivery of Actives.
- Author
-
Monou PK, Andriotis EG, Tsongas K, Tzimtzimis EK, Katsamenis OL, Tzetzis D, Anastasiadou P, Ritzoulis C, Vizirianakis IS, Andreadis D, and Fatouros DG
- Subjects
- Light, Needles, Humans, Cell Line, Cell Survival, Printing, Three-Dimensional
- Abstract
In the present study, two different microneedle devices were produced using digital light processing (DLP). These devices hold promise as drug delivery systems to the buccal tissue as they increase the permeability of actives with molecular weights between 600 and 4000 Da. The attached reservoirs were designed and printed along with the arrays as a whole device. Light microscopy was used to quality control the printability of the designs, confirming that the actual dimensions are in agreement with the digital design. Non-destructive volume imaging by means of microfocus computed tomography was employed for dimensional and defect characterization of the DLP-printed devices, demonstrating the actual volumes of the reservoirs and the malformations that occurred during printing. The penetration test and finite element analysis showed that the maximum stress experienced by the needles during the insertion process (10 N) was below their ultimate compressive strength (240-310 N). Permeation studies showed the increased permeability of three model drugs when delivered with the MN devices. Size-exclusion chromatography validated the stability of all the actives throughout the permeability tests. The safety of these printed devices for buccal administration was confirmed by histological evaluation and cell viability studies using the TR146 cell line, which indicated no toxic effects.
- Published
- 2023
- Full Text
- View/download PDF
119. Novel 3D-Printed Biocarriers from Aluminosilicate Materials.
- Author
-
Economou EA, Koltsakidis S, Dalla I, Tsongas K, Romanos GE, Tzetzis D, Falaras P, Theodorakopoulos G, Middelkoop V, and Sfetsas T
- Abstract
The addition of biocarriers can improve biological processes in bioreactors, since their surface allows for the immobilization, attachment, protection, and growth of microorganisms. In addition, the development of a biofilm layer allows for the colonization of microorganisms in the biocarriers. The structure, composition, and roughness of the biocarriers' surface are crucial factors that affect the development of the biofilm. In the current work, the aluminosilicate zeolites 13X and ZSM-5 were examined as the main building components of the biocarrier scaffolds, using bentonite, montmorillonite, and halloysite nanotubes as inorganic binders in various combinations. We utilized 3D printing to form pastes into monoliths that underwent heat treatment. The 3D-printed biocarriers were subjected to a mechanical analysis, including density, compression, and nanoindentation tests. Furthermore, the 3D-printed biocarriers were morphologically and structurally characterized using nitrogen adsorption at 77 K (LN
2 ), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The stress-strain response of the materials was obtained through nanoindentation tests combined with the finite element analysis (FEA). These tests were also utilized to simulate the lattice geometries under compression loading conditions to investigate their deformation and stress distribution in relation to experimental compression testing. The results indicated that the 3D-printed biocarrier of 13X/halloysite nanotubes was endowed with a high specific surface area of 711 m2 /g and extended mesoporous structure. Due to these assets, its bulk density of 1.67 g/cm3 was one of the lowest observed amongst the biocarriers derived from the various combinations of materials. The biocarriers based on the 13X zeolite exhibited the highest mechanical stability and appropriate morphological features. The 13X/halloysite nanotubes scaffold exhibited a hardness value of 45.64 MPa, which is moderate compared to the rest, while it presented the highest value of modulus of elasticity. In conclusion, aluminosilicate zeolites and their combinations with clays and inorganic nanotubes provide 3D-printed biocarriers with various textural and structural properties, which can be utilized to improve biological processes, while the most favorable characteristics are observed when utilizing the combination of 13X/halloysite nanotubes.- Published
- 2023
- Full Text
- View/download PDF
120. Effect of Monomer Type on the Synthesis and Properties of Poly(Ethylene Furanoate).
- Author
-
Stanley J, Terzopoulou Z, Klonos PA, Zamboulis A, Xanthopoulou E, Koltsakidis S, Tzetzis D, Zemljič LF, Lambropoulou DA, Kyritsis A, Papageorgiou GZ, and Bikiaris DN
- Abstract
This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.
- Published
- 2023
- Full Text
- View/download PDF
121. Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processing.
- Author
-
Makri SP, Xanthopoulou E, Valera MA, Mangas A, Marra G, Ruiz V, Koltsakidis S, Tzetzis D, Zoikis Karathanasis A, Deligkiozi I, Nikolaidis N, Bikiaris D, and Terzopoulou Z
- Abstract
Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: (a) conventional melt-mixing and (b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.
- Published
- 2023
- Full Text
- View/download PDF
122. Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing.
- Author
-
Kladovasilakis N, Charalampous P, Boumpakis A, Kontodina T, Tsongas K, Tzetzis D, Kostavelis I, Givissis P, and Tzovaras D
- Subjects
- Bone and Bones, Polymers chemistry, Porosity, Tissue Scaffolds chemistry, Polyesters chemistry
- Abstract
In the last decade, the development of customized biodegradable scaffolds and implants has attracted increased scientific interest due to the fact that additive manufacturing technologies allow for the rapid production of implants with high geometric complexity constructed via commercial biodegradable polymers. In this study, innovative designs of tibial scaffold in form of bone-brick configuration were developed to fill the bone gap utilizing advanced architected materials and bio-inspired diffusion canals. The architected materials and canals provide high porosity, as well as a high surface area to volume ratio in the scaffold facilitating that way in the tissue regeneration process and in withstanding the applied external loads. The cellular structures applied in this work were the Schwarz Diamond (SD) and a hybrid SD&FCC hybrid cellular material, which is a completely new architected material that derived from the combination of SD and Face Centered Cubic (FCC) structures. These designs were additively manufactured utilizing two biodegradable materials namely Polylactic acid (PLA) and Polycaprolactone (PCL), using the Fused Filament Fabrication (FFF) technique, in order to avoid the surgery, for the scaffold's removal after the bone regeneration. Furthermore, the additively manufactured scaffolds were examined in terms of compatibility and assembly with the bone's physical model, as well as, in terms of mechanical behavior under realistic static loads. In addition, non-linear finite element models (FEMs) were developed based on the experimental data to accurately simulate the mechanical response of the examined scaffolds. The Finite Element Analysis (FEA) results were compared with the experimental response and afterwards the stress concentration regions were observed and identified. Τhe proposed design of scaffold with SD&FCC lattice structure made of PLA material with a relative density of 20% revealed the best overall performance, showing that it is the most suitable candidate for further investigation (in-vivo test, clinical trials, etc.) and commercialization., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
123. Fabrication of 3D-printed octreotide acetate-loaded oral solid dosage forms by means of semi-solid extrusion printing.
- Author
-
Chatzitaki AT, Eleftheriadis G, Tsongas K, Tzetzis D, Spyros A, Vizirianakis IS, and Fatouros DG
- Subjects
- Humans, Caco-2 Cells, Drug Compounding methods, Dosage Forms, Drug Liberation, Technology, Pharmaceutical methods, Octreotide, Printing, Three-Dimensional
- Abstract
Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner. The application of these formulations to Caco-2 cell monolayers revealed their capability to induce the transient opening of tight junctions in a reversible manner as evidenced by Transepithelial Resistance (TEER) measurements. Cellular assays (CCK-8 assay) demonstrated the viability of intestinal cells in the presence of these formulations. The in vitro transport studies across Caco-2 monolayers demonstrated the ability of these formulations to enhance the OCT uptake across the cell monolayer over time due to opening of the tight junctions., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
124. Blending PLA with Polyesters Based on 2,5-Furan Dicarboxylic Acid: Evaluation of Physicochemical and Nanomechanical Properties.
- Author
-
Terzopoulou Z, Zamboulis A, Papadopoulos L, Grigora ME, Tsongas K, Tzetzis D, Bikiaris DN, and Papageorgiou GZ
- Abstract
Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an economic and easy way to improve its properties, such as its slow degradation and crystallization rates and its small elongation, and thus, make it more versatile. In this work, the effects of different 2,5-furan dicarboxylic acid (FDCA)-based polyesters on the physicochemical and mechanical properties of PLA were studied. Poly(butylene furan 2,5-dicarboxylate) (PBF) and its copolymers with poly(butylene adipate) (PBAd) were synthesized in various comonomer ratios and were blended with 70 wt% PLA using melt compounding. The thermal, morphological and mechanical properties of the blends are investigated. All blends were immiscible, and the presence of the dispersed phases improved the crystallization ability of PLA. Mechanical testing revealed the plasticization of PLA after blending, and a small but measurable mass loss after burying in soil for 7 months. Reactive blending was evaluated as a compatibilizer-free method to improve miscibility, and it was found that when the thermal stability of the blend components allowed it, some transesterification reactions occurred between the PLA matrix and the FDCA-based dispersed phase after 20 min at 250 °C.
- Published
- 2022
- Full Text
- View/download PDF
125. Graphene Nanoplatelets' Effect on the Crystallization, Glass Transition, and Nanomechanical Behavior of Poly(ethylene 2,5-furandicarboxylate) Nanocomposites.
- Author
-
Kourtidou D, Grigora ME, Tzetzis D, Bikiaris DN, and Chrissafis K
- Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with various content of graphene nanoplatelets (GNPs) were synthesized in situ in this work. PEF is a widely known biobased polyester with promising physical properties and is considered as the sustainable counterpart of PET. Despite its exceptional gas barrier and mechanical properties, PEF presents with a low crystallization rate. In this context, a small number of GNPs were incorporated into the material to facilitate the nucleation and overall crystallization of the matrix. Kinetic analysis of both the cold and melt crystallization processes of the prepared materials was achieved by means of differential scanning calorimetry (DSC). The prepared materials' isothermal crystallization from the glass and melt states was studied using the Avrami and Hoffman-Lauritzen theories. The Dobreva method was applied for the non-isothermal DSC measurements to calculate the nucleation efficiency of the GNPs on the PEF matrix. Furthermore, Vyazovkin's isoconversional method was employed to estimate the effective activation energy values of the amorphous materials' glass transition. Finally, the nanomechanical properties of the amorphous and semicrystalline PEF materials were evaluated via nanoindentation measurements. It is shown that the GNPs facilitate the crystallization process through heterogeneous nucleation and, at the same time, improve the nanomechanical behavior of PEF, with the semicrystalline samples presenting with the larger enhancements.
- Published
- 2022
- Full Text
- View/download PDF
126. Architected Materials for Additive Manufacturing: A Comprehensive Review.
- Author
-
Kladovasilakis N, Tsongas K, Karalekas D, and Tzetzis D
- Abstract
One of the main advantages of Additive Manufacturing (AM) is the ability to produce topologically optimized parts with high geometric complexity. In this context, a plethora of architected materials was investigated and utilized in order to optimize the 3D design of existing parts, reducing their mass, topology-controlling their mechanical response, and adding remarkable physical properties, such as high porosity and high surface area to volume ratio. Thus, the current re-view has been focused on providing the definition of architected materials and explaining their main physical properties. Furthermore, an up-to-date classification of cellular materials is presented containing all types of lattice structures. In addition, this research summarized the developed methods that enhance the mechanical performance of architected materials. Then, the effective mechanical behavior of the architected materials was investigated and compared through the existing literature. Moreover, commercial applications and potential uses of the architected materials are presented in various industries, such as the aeronautical, automotive, biomechanical, etc. The objectives of this comprehensive review are to provide a detailed map of the existing architected materials and their mechanical behavior, explore innovative techniques for improving them and highlight the comprehensive advantages of topology optimization in industrial applications utilizing additive manufacturing and novel architected materials., Competing Interests: The authors declare no conflict of interest.
- Published
- 2022
- Full Text
- View/download PDF
127. Design and Prototype Fabrication of a Cost-Effective Microneedle Drug Delivery Apparatus Using Fused Filament Fabrication, Liquid Crystal Display and Semi-Solid Extrusion 3D Printing Technologies.
- Author
-
Papadimitriou P, Andriotis EG, Fatouros D, and Tzetzis D
- Abstract
The current study describes the design of a cost-effective drug delivery apparatus that can be manufactured, assembled, and utilized as easily and quickly as possible, minimizing the time and expense of the supply chain. This apparatus could become a realistic alternative method of providing a vaccine or drug in harsh circumstances, including humanitarian disasters or a lack of medical and nursing staff, conditions that are frequently observed in developing countries. Simultaneously, with the use of microneedles (MNs), the apparatus can benefit from the numerous advantages offered by them during administration. The hollow microneedles in particular are internally perforated and are capable of delivering the active substance to the skin. The apparatus was designed with appropriate details in computer aided design software, and various 3D printing technologies were utilized in order to fabricate the prototype. The parts that required minimum accuracy, such as the main body of the apparatus, were fabricated with fused filament fabrication. The internal parts and the hollow microneedles were fabricated with liquid crystal display, and the substance for the drug loading carrier, which was an alginate gel cylinder, was fabricated with semi-solid extrusion 3D printing.
- Published
- 2022
- Full Text
- View/download PDF
128. Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications.
- Author
-
Monou PK, Mamaligka AM, Tzimtzimis EK, Tzetzis D, Vergkizi-Nikolakaki S, Vizirianakis IS, Andriotis EG, Eleftheriadis GK, and Fatouros DG
- Abstract
In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.
- Published
- 2022
- Full Text
- View/download PDF
129. Design and Development of a Multi-Functional Bioinspired Soft Robotic Actuator via Additive Manufacturing.
- Author
-
Kladovasilakis N, Sideridis P, Tzetzis D, Piliounis K, Kostavelis I, and Tzovaras D
- Abstract
The industrial revolution 4.0 has led to a burst in the development of robotic automation and platforms to increase productivity in the industrial and health domains. Hence, there is a necessity for the design and production of smart and multi-functional tools, which combine several cutting-edge technologies, including additive manufacturing and smart control systems. In the current article, a novel multi-functional biomimetic soft actuator with a pneumatic motion system was designed and fabricated by combining different additive manufacturing techniques. The developed actuator was bioinspired by the natural kinematics, namely the motion mechanism of worms, and was designed to imitate the movement of a human finger. Furthermore, due to its modular design and the ability to adapt the actuator's external covers depending on the requested task, this actuator is suitable for a wide range of applications, from soft (i.e., fruit grasping) or industrial grippers to medical exoskeletons for patients with mobility difficulties and neurological disorders. In detail, the motion system operates with two pneumatic chambers bonded to each other and fabricated from silicone rubber compounds molded with additively manufactured dies made of polymers. Moreover, the pneumatic system offers multiple-degrees-of-freedom motion and it is capable of bending in the range of -180° to 180°. The overall pneumatic system is protected by external covers made of 3D printed components whose material could be changed from rigid polymer for industrial applications to thermoplastic elastomer for complete soft robotic applications. In addition, these 3D printed parts control the angular range of the actuator in order to avoid the reaching of extreme configurations. Finally, the bio-robotic actuator is electronically controlled by PID controllers and its real-time position is monitored by a one-axis soft flex sensor which is embedded in the actuator's configuration.
- Published
- 2022
- Full Text
- View/download PDF
130. Physicochemical Characterization and Finite Element Analysis-Assisted Mechanical Behavior of Polylactic Acid-Montmorillonite 3D Printed Nanocomposites.
- Author
-
Grigora ME, Terzopoulou Z, Tsongas K, Bikiaris DN, and Tzetzis D
- Abstract
This work aims to improve the properties of poly(lactic acid) (PLA) for future biomedical applications by investigating the effect of montmorillonite (MMT) nanoclay on physicochemical and mechanical behavior. PLA nanocomposite filaments were fabricated using different amounts of MMT (1.0, 2.0, and 4.0 wt.%) and 2 wt.% Joncryl chain extenders. The 3D-printed specimens were manufactured using Fused Filament Fabrication (FFF). The composites were characterized by Gel Permeation Chromatography (GPC), Melt Flow Index (MFI), X-ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The thermal properties were studied by means of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Moreover, the hydrophilicity of the PLA/MMT nanocomposites was investigated by measuring the water contact angle. The mechanical behavior of the PLA/MMT nanocomposites was examined with nanoindentation, compression tests, and Dynamic Mechanical Analysis (DMA). The presence of Joncryl, as well as the pretreatment of MMT before filament fabrication, improved the MMT distribution in the nanocomposites. Furthermore, MMT enhanced the printability of PLA and improved the hydrophilicity of its surface. In addition, the results of nanoindentation testing coupled with Finite Element Analysis showed that as the MMT weight fraction increased, as well as an increased Young's modulus. According to the results of the mechanical analysis, the best mechanical behavior was achieved for PLA nanocomposite with 4 wt.% MMT.
- Published
- 2022
- Full Text
- View/download PDF
131. Influence of Selective Laser Melting Additive Manufacturing Parameters in Inconel 718 Superalloy.
- Author
-
Kladovasilakis N, Charalampous P, Tsongas K, Kostavelis I, Tzovaras D, and Tzetzis D
- Abstract
Selective laser melting (SLM) is one of the most reliable and efficient procedures for Metal Additive Manufacturing (AM) due to the capability to produce components with high standards in terms of dimensional accuracy, surface finish, and mechanical behavior. In the past years, the SLM process has been utilized for direct manufacturing of fully functional mechanical parts in various industries, such as aeronautics and automotive. Hence, it is essential to investigate the SLM procedure for the most commonly used metals and alloys. The current paper focuses on the impact of crucial process-related parameters on the final quality of parts constructed with the Inconel 718 superalloy. Utilizing the SLM process and the Inconel 718 powder, several samples were fabricated using various values on critical AM parameters, and their mechanical behavior as well as their surface finish were examined. The investigated parameters were the laser power, the scan speed, the spot size, and their output Volumetric Energy Density (VED), which were applied on each specimen. The feedstock material was inspected using Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) analysis, and Particle-size distribution (PSD) measurements in order to classify the quality of the raw material. The surface roughness of each specimen was evaluated via multi-focus imaging, and the mechanical performance was quantified utilizing quasi-static uniaxial tensile and nanoindentation experiments. Finally, regression-based models were developed in order to interpret the behavior of the AM part's quality depending on the process-related parameters.
- Published
- 2022
- Full Text
- View/download PDF
132. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering.
- Author
-
Chachlioutaki K, Karavasili C, Adamoudi E, Bouropoulos N, Tzetzis D, Bakopoulou A, and Fatouros DG
- Subjects
- Animals, Anti-Inflammatory Agents pharmacology, Glycolates, Humans, Lactic Acid chemistry, Mice, Periodontium, Polyglycolic Acid chemistry, Polylactic Acid-Polyglycolic Acid Copolymer, RAW 264.7 Cells, Tissue Scaffolds chemistry, Sericins pharmacology, Tissue Engineering
- Abstract
Periodontal disease is associated with chronic inflammation and destruction of the soft and hard tissues in the periodontium. Scaffolds that would enable cell attachment and proliferation while at the same time providing a local sustained anti-inflammatory action would be beneficial in restoring or reversing disease progression. In the current study, silk sericin, a natural protein derived from the silkworm cocoons, was electrospun with poly lactide-co-glycolic acid (PLGA) and ketoprofen, and the composite scaffolds were assessed for their physicochemical and mechanical properties, as well as their biocompatibility and in vitro anti-inflammatory action. The composite scaffolds showed an increase in their hydrophilicity and an exceptional reinforcement of their mechanical properties, compared to plain PLGA scaffolds, sustaining drug release for up to 15 days. Human gingival fibroblasts showed a favorable attachment and proliferation on the composite scaffolds as visualized with scanning electron and confocal microscopy. A significant downregulation of the pro-inflammatory markers MMP-9 and MMP-3 and an upregulation of the anti-inflammatory gene IL-10 was achieved for lipopolysaccharide-stimulated RAW 264.7 macrophages after cultivation on the composite scaffolds. The current study demonstrated that silk sericin-PLGA composite scaffolds have the potential to simultaneously accommodate cell attachment and proliferation and achieve a sustained anti-inflammatory action in the treatment of periodontal diseases., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
133. In Situ Gelling Electrospun Ocular Films Sustain the Intraocular Pressure-Lowering Effect of Timolol Maleate: In Vitro, Ex Vivo, and Pharmacodynamic Assessment.
- Author
-
Andreadis II, Karavasili C, Thomas A, Komnenou A, Tzimtzimis M, Tzetzis D, Andreadis D, Bouropoulos N, and Fatouros DG
- Subjects
- Administration, Ophthalmic, Adrenergic beta-Antagonists administration & dosage, Animals, Chromatography, High Pressure Liquid, Cornea drug effects, Cornea metabolism, Poloxamer, Polyvinyl Alcohol, Swine, Timolol administration & dosage, Adrenergic beta-Antagonists pharmacology, Gels administration & dosage, Intraocular Pressure drug effects, Timolol pharmacology
- Abstract
Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the β-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability ( P
app ) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.- Published
- 2022
- Full Text
- View/download PDF
134. Influence of Reactive Chain Extension on the Properties of 3D Printed Poly(Lactic Acid) Constructs.
- Author
-
Grigora ME, Terzopoulou Z, Tsongas K, Klonos P, Kalafatakis N, Bikiaris DN, Kyritsis A, and Tzetzis D
- Abstract
Fused deposition modeling (FDM) is currently the most popular 3D printing method, where thermoplastic polymers are predominantly used. Among them, the biobased poly(lactic acid) (PLA) governs the FDM filament market, with demand higher than supply, since not all grades of PLA are suitable for FDM filament production. In this work, the effect of a food grade chain extender (Joncryl ADR
® 4400) on the physicochemical properties and printability of PLA marketed for injection molding was examined. All samples were characterized in terms of their mechanical and thermal properties. The microstructure of the filaments and 3D-printed fractured surfaces following tensile testing were examined with optical and scanning electron microscopy, respectively. Molecular weight and complex viscosity increased, while the melt flow index decreased after the incorporation of Joncryl, which resulted in filaments of improved quality and 3D-printed constructs with enhanced mechanical properties. Dielectric spectroscopy revealed that the bulk properties of PLA with respect to molecular mobility, both local and segmental, were, interestingly, not affected by the modifier. Indirectly, this may suggest that the major effects of the extender are on chain length, without inducing chain branching, at least not to a significant extent.- Published
- 2021
- Full Text
- View/download PDF
135. Automated digital design for 3D-printed individualized therapies.
- Author
-
Eleftheriadis GK, Kantarelis E, Monou PK, Andriotis EG, Bouropoulos N, Tzimtzimis EK, Tzetzis D, Rantanen J, and Fatouros DG
- Subjects
- Drug Liberation, Humans, Reproducibility of Results, Drug Delivery Systems, Printing, Three-Dimensional
- Abstract
Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.g., size and shape). A solution for customization can be realized via non-expert-guided processing of digital designs and drug dose. This study presents a proof-of-concept computational algorithm which calculates the optimal dimensions of grid-like orodispersible films (ODFs), considering the recommended dose. Further, the algorithm exports a digital design file which contains the required ODF configuration. Cannabidiol (CBD) was incorporated in the ODFs, considering the simple correspondence between the recommended dose and the patient's weight. The ODFs were 3D-printed and characterized for their physicochemical, mechanical, disintegration and drug release properties. The algorithm was evaluated for its accuracy on dose estimation, highlighting the reproducibility of individualized ODFs. The in vitro performance was principally affected by the thickness and volume of the grid-like structures. The concept provides an alternative approach that promotes automation in the manufacturing of personalized medications in distributed points of care, such as hospitals and local pharmacies., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
136. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery.
- Author
-
Xenikakis I, Tsongas K, Tzimtzimis EK, Zacharis CK, Theodoroula N, Kalogianni EP, Demiri E, Vizirianakis IS, Tzetzis D, and Fatouros DG
- Subjects
- Administration, Cutaneous, Drug Delivery Systems, Humans, Microinjections, Needles, Polymerization, Printing, Three-Dimensional, Liquid Crystals
- Abstract
The present study aimed to fabricate a hollow microneedle device consisting of an array and a reservoir by means of 3D printing technology for transdermal peptide delivery. Hollow microneedles (HMNs) were fabricated using a biocompatible resin material, while PLA filament was used for the reservoirs. The fabricated microdevice was characterized by means of optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle measurements and leakage inspection studies to ensure the passageway of liquid formulations. Mechanical failure and penetration tests were carried out and supported by Finite Element Analysis (FEA). The cytocompatibility of the microneedle arrays was assessed to human keratinocytes (HaCaT). Finally, the transport of the model peptide octreotide acetate across artificial membranes was assessed in Franz cells using the aforementioned HMN design., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
137. Corrigendum to "Physico-mechanical and finite element analysis evaluation of 3D printable alginate-methylcellulose inks for wound healing applications" [Carbohydr. Polym. 247 (2020) 116666].
- Author
-
Karavasili C, Tsongas K, Andreadis II, Andriotis EG, Papachristou ET, Papi RM, Tzetzis D, and Fatouros DG
- Published
- 2021
- Full Text
- View/download PDF
138. Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids.
- Author
-
Andriotis EG, Chachlioutaki K, Monou PK, Bouropoulos N, Tzetzis D, Barmpalexis P, Chang MW, Ahmad Z, and Fatouros DG
- Subjects
- Administration, Oral, Cannabidiol chemistry, Cannabinoids chemistry, Drug Compounding, Drug Liberation, Polymethacrylic Acids chemistry, Povidone chemistry, Cannabidiol administration & dosage, Cannabinoids administration & dosage, Nanofibers chemistry
- Abstract
Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 μm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.
- Published
- 2021
- Full Text
- View/download PDF
139. Physico-mechanical and finite element analysis evaluation of 3D printable alginate-methylcellulose inks for wound healing applications.
- Author
-
Karavasili C, Tsongas K, Andreadis II, Andriotis EG, Papachristou ET, Papi RM, Tzetzis D, and Fatouros DG
- Subjects
- Cell Survival, Finite Element Analysis, Humans, Hydrogels chemistry, Ink, Alginates chemistry, Dermis drug effects, Fibroblasts drug effects, Hydrogels administration & dosage, Methylcellulose chemistry, Printing, Three-Dimensional instrumentation, Wound Healing drug effects
- Abstract
The present study reports on the comprehensive physico-mechanical evaluation of 3D printable alginate-methylcellulose hydrogels with bioactive components (Manuka honey, aloe vera gel, eucalyptus essential oil) using a combined experimental-numerical approach. The 3D printable carbohydrate inks demonstrated good swelling properties under moist conditions and adequate antimicrobial and antibiofilm efficacy against both Gram positive and negative bacteria. The effect of the bioactive compounds on the viscosity and mechanical properties of the 3D printable hydrogels was assessed with rheological, nanoindentation and shear test measurements. All hydrogel compositions showed good biocompatibility on human dermal fibroblasts, stimulating cell growth as confirmed by an in vitro wound healing assay. Finite element analysis simulation was employed to further advance the calculation accuracy of the nanoindentation tests, concluding that combination of an experimental and a numerical technique may constitute a useful method to characterize the mechanical behavior of composite hydrogel films for use in wound healing applications., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
140. Chitosan dressings containing inorganic additives and levofloxacin as potential wound care products with enhanced hemostatic properties.
- Author
-
Koumentakou I, Terzopoulou Z, Michopoulou A, Kalafatakis I, Theodorakis K, Tzetzis D, and Bikiaris D
- Subjects
- Animals, Anti-Bacterial Agents pharmacology, Blood Coagulation, Cells, Cultured, Humans, Keratinocytes, Mice, Inbred C57BL, Porosity, Bandages, Biocompatible Materials chemistry, Biocompatible Materials pharmacology, Chitosan chemistry, Chitosan pharmacology, Ferric Compounds chemistry, Ferric Compounds pharmacology, Hemostatics chemistry, Hemostatics pharmacology, Hydrogels chemistry, Hydrogels pharmacology, Levofloxacin pharmacology
- Abstract
Despite the progress in the development of hemostatic products, efficient treatment solutions to control hemorrhage upon wounding are still necessary. Chitosan (CS) is a natural hydrogel-forming polysaccharide, easy to modify for specific applications. Inorganic compounds in turn possess documented hemostatic properties. In this study, innovative hemostatic products based on CS, containing the inorganic additives aluminum chloride, aluminum sulfate hydrate or iron(III) sulfate and the antibiotic Levofloxacin were prepared, and their potential use as hemostatic materials was investigated. Structural characteristics, physical state and drug loading/release properties were examined. Strong interactions developed between CS and the additives, the pore size in the resulting products was affected, swelling increased up to 2500% and the stability of the wound dressings improved. The crystallinity of Levofloxacin reduced, and its release was immediate. The materials showed biocompatibility upon contact with cultured keratinocytes, hemocompatibility and hemostatic efficacy in vitro and in vivo., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
141. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach.
- Author
-
Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M, Singh N, Qutachi O, Wilson P, Tzetzis D, Chang MW, Fatouros DG, and Ahmad Z
- Subjects
- Drug Liberation, Microinjections standards, Polyesters chemistry, Polyesters standards, Polymers standards, Povidone chemistry, Povidone standards, Spectroscopy, Fourier Transform Infrared methods, Technology, Pharmaceutical standards, Microinjections instrumentation, Needles standards, Polymers chemistry, Qualitative Research, Technology, Pharmaceutical instrumentation
- Abstract
The research presented here shows QbD implementation for the optimisation of the key process parameters in electrohydrodynamic atomisation (EHDA). Here, the electrosprayed nanoparticles and electrospun fibers consisting of a polymeric matrix and dye. Eight formulations were assessed consisting of 5% w/v of polycaprolactone (PCL) in dichloromethane (DCM) and 5% w/v polyvinylpyrrolidone (PVP) in ethanol. A full factorial DOE was used to assess the various parameters (applied voltage, deposition distance, flow rate). Further particle and fiber analysis using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), particle/fiber size distribution. In addition to this in vitro release studied were carried out using fluorescein and Rhodamine B as model dyes and in vitro permeation studies were applied. The results show a significant difference in the morphology of resultant structures as well as a more rapid release profile for the PVP particles and fibers in comparison to the sustained release profiles found with PCL. In vitro drug release studies showed 100% drug release after 7 days for PCL particles and showed 100% drug release within 120 min for PVP particles. The release kinetics and the permeation study showed that the MN successfully pierced the membrane and the electrospun MN coating released a large amount of the loaded drug within 6 h. This study has demonstrated the capability of these robust MNs to encapsulate a diverse range drugs within a polymeric matrix giving rise to the potential of developed personalised medical devices., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
142. Characterization and properties of non-granular thermoplastic starch-Clay biocomposite films.
- Author
-
Mansour G, Zoumaki M, Marinopoulou A, Tzetzis D, Prevezanos M, and Raphaelides SN
- Subjects
- Absorption, Physicochemical, Glycerol chemistry, Plasticizers chemistry, Steam, Tensile Strength, Water chemistry, X-Ray Diffraction, Bentonite chemistry, Clay chemistry, Nanocomposites chemistry, Plastics chemistry, Starch chemistry, Temperature
- Abstract
Biocomposite films were prepared using as raw materials non-granular normal maize starch plasticized with glycerol and Na-montmorillonite clay particles in various concentrations. The physicochemical properties of films were studied, and their structure and morphology were investigated using XRD analysis, Thermal analysis, Scanning Electron Microscopy combined with Element Microanalysis. The mechanical characteristics were investigated through tensile test. The results indicated that the presence of clay particles in the starch matrix reduced the water absorption rate of films in comparison to starch films containing glycerol but not clay particles. The biocomposite films exhibited enhanced tensile properties at low glycerol and high clay contents. Best results were obtained for films containing 20 wt% glycerol and 10-20 wt% clay content. It is suggested that the non-granular maize starch, is a suitable raw material for the preparation of biocomposite films with improved structural and mechanical characteristics in comparison to films prepared using granular starch., Competing Interests: Declaration of Competing Interest The authors declare no conflict of interest., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
143. Finite Element Analysis of Orthopedic Hip Implant with Functionally Graded Bioinspired Lattice Structures.
- Author
-
Kladovasilakis N, Tsongas K, and Tzetzis D
- Abstract
The topology optimization (TO) process has the objective to structurally optimize products in various industries, such as in biomechanical engineering. Additive manufacturing facilitates this procedure and enables the utility of advanced structures in order to achieve the optimal product design. Currently, orthopedic implants are fabricated from metal or metal alloys with totally solid structure to withstand the applied loads; nevertheless, such a practice reduces the compatibility with human tissues and increases the manufacturing cost as more feedstock material is needed. This article investigates the possibility of applying bioinspired lattice structures (cellular materials) in order to topologically optimize an orthopedic hip implant, made of Inconel 718 superalloy. Lattice structures enable topology optimization of an object by reducing its weight and increasing its porosity without compromising its mechanical behavior. Specifically, three different bioinspired advanced lattice structures were investigated through finite element analysis (FEA) under in vivo loading. Furthermore, the regions with lattice structure were optimized through functional gradation of the cellular material. Results have shown that optimal design of hip implant geometry, in terms of stress behavior, was achieved through functionally graded lattice structures and the hip implant is capable of withstanding up to two times the in vivo loads, suggesting that this design is a suitable and effective replacement for a solid implant.
- Published
- 2020
- Full Text
- View/download PDF
144. Inkjet printing of a thermolabile model drug onto FDM-printed substrates: formulation and evaluation.
- Author
-
Eleftheriadis GK, Katsiotis CS, Andreadis DA, Tzetzis D, Ritzoulis C, Bouropoulos N, Kanellopoulou D, Andriotis EG, Tsibouklis J, and Fatouros DG
- Subjects
- Drug Delivery Systems methods, Drug Liberation, Printing, Three-Dimensional, Hypromellose Derivatives chemistry, Pharmaceutical Preparations
- Abstract
Objective: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films., Methods: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies., Results: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API., Conclusions: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.
- Published
- 2020
- Full Text
- View/download PDF
145. Electrospun Orodispersible Films of Isoniazid for Pediatric Tuberculosis Treatment.
- Author
-
Chachlioutaki K, Tzimtzimis EK, Tzetzis D, Chang MW, Ahmad Z, Karavasili C, and Fatouros DG
- Abstract
Child-appropriate dosage forms are critical in promoting adherence and effective pharmacotherapy in pediatric patients, especially those undergoing long-term treatment in low-resource settings. The present study aimed to develop orodispersible films (ODFs) for isoniazid administration to children exposed to tuberculosis. The ODFs were produced from the aqueous solutions of natural and semi-synthetic polymer blends using electrospinning. The spinning solutions and the resulting fibers were physicochemically characterized, and the disintegration time and isoniazid release from the ODFs were assessed in simulated salivary fluid. The ODFs comprised of nanofibers with adequate thermal stability and possible drug amorphization. Film disintegration occurred instantly upon contact with simulated salivary fluid within less than 15 s, and isoniazid release from the ODFs in the same medium followed after the disintegration profiles, achieving rapid and total drug release within less than 60 s. The ease of administration and favorable drug loading and release properties of the ODFs may provide a dosage form able to facilitate proper adherence to treatment within the pediatric patient population.
- Published
- 2020
- Full Text
- View/download PDF
146. Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients.
- Author
-
Gioumouxouzis CI, Tzimtzimis E, Katsamenis OL, Dourou A, Markopoulou C, Bouropoulos N, Tzetzis D, and Fatouros DG
- Subjects
- Cellulose analogs & derivatives, Cellulose chemistry, Delayed-Action Preparations chemistry, Diltiazem chemistry, Dosage Forms, Drug Liberation, Excipients chemistry, Osmosis, Printing, Three-Dimensional, Technology, Pharmaceutical methods
- Abstract
In pharmaceutical formulations, pharmacokinetic behavior of the Active Pharmaceutical Ingredients (API's) is significantly affected by their dissolution profiles. In this project, we attempted to create personalized dosage forms with osmotic properties that exhibit different API release patterns via Fused Deposition Modelling (FDM) 3D printing. Specifically, cellulose acetate was employed to create an external shell of an osmotically active core containing Diltiazem (DIL) as model drug. By removing parts of the shell (upper surface, linear lateral segments) were created dosage forms that modify their shape at specific time frames under the effect of the gradually induced osmotic pressure. Hot-Melt Extrusion (HME) was employed to fabricate two different 3DP feeding filaments, for the creation of either the shell or the osmotic core (dual-extrusion printing). Printed formulations and filaments were characterized by means of (TGA, XRD, DSC) and inspected using microscopy (optical and electron). The mechanical properties of the filaments were assessed by means of micro- and macro mechanical testing, whereas micro-Computed Tomography (μCT) was employed to investigate the volumetric changes occurring during the hydration process. XRD indicated the amorphization of DIL inside HME filaments and printed dosage forms, whereas the incorporated NaCl (osmogen) retained its crystallinity. Mechanical properties' testing confirmed the printability of produced filaments. Dissolution tests revealed that all formulations exhibited sustained release differing at the initiation time of the API dissolution (0, 120 and 360 min for the three different formulations). Finally, μCT uncovered the key structural changes associated with distinct phases of the release profile. The above results demonstrate the successful utilization of an FDM 3D printer in order to create osmotic 3D printed formulations exhibiting sustained and/or delayed release, that can be easily personalized containing API doses corresponding to each patient's specific needs., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
147. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation.
- Author
-
Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J, Rantanen J, and Fatouros DG
- Subjects
- Administration, Buccal, Animals, Cellulose analogs & derivatives, Cellulose chemistry, Chitosan chemistry, Drug Compounding methods, Drug Delivery Systems methods, Drug Liberation drug effects, Mouth Mucosa metabolism, Polymers chemistry, Polyvinyl Alcohol chemistry, Printing, Three-Dimensional, Swine, Adhesives chemistry, Pharmaceutical Preparations chemistry
- Abstract
Oromucosal delivery of active pharmaceutical ingredients provides an attractive alternative route of administration, due to avoidance of the first pass effect and improved patient compliance. In the current work, fused deposition modelling (FDM) 3D printing was investigated as an additive manufacturing approach for poly(vinyl alcohol)-based mucoadhesive films, enabling unidirectional drug release. For this purpose, chitosan was incorporated as a permeation and mucoadhesion enhancer whereas ethylcellulose and commercial wafer sheets were evaluated as backing layers. The formulated films were initially assessed for structural integrity and dose uniformity. Solid-state characterization of the films, including thermal methods (DSC, TGA), diffraction (XRPD) and Raman spectroscopy, was implemented to characterize the physicochemical properties of the produced polymeric filaments and buccal films. The mechanical properties of the products were investigated by instrumented indentation and tensile tests. Evaluation of buccal films was assessed in vitro, to study the effect of backing-layer type on hydration capacity of the films, diffusion of the drug throughout the restricting layer and release profiles in simulated saliva. The ex vivo performance of the manufactured products, associated with the presence of chitosan, was investigated by textural analysis for mucoadhesion properties, whereas permeation studies and histological studies were performed across porcine buccal epithelium. The results demonstrated that FDM printing is a timesaving and versatile approach in the context of manufacturing multi-layered mucoadhesive buccal films, providing unidirectional release properties., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
148. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro.
- Author
-
Xenikakis I, Tzimtzimis M, Tsongas K, Andreadis D, Demiri E, Tzetzis D, and Fatouros DG
- Subjects
- Administration, Cutaneous, Female, Finite Element Analysis, Fluorescein-5-isothiocyanate administration & dosage, Humans, Microinjections, Middle Aged, Printing, Three-Dimensional, Skin Absorption, Technology, Pharmaceutical, Coloring Agents administration & dosage, Dextrans administration & dosage, Fluorescein-5-isothiocyanate analogs & derivatives, Fluoresceins administration & dosage, Needles, Skin metabolism
- Abstract
This research aimed to manufacture and evaluate in vitro 3D printed microneedles for transdermal drug delivery. Firstly, microneedle arrays were fabricated using a polymer-based material. Subsequently, these arrays were tested for their mechanical strength applying axial load along their length, while prediction of the buckling load was performed using widely known arithmetic models. Additionally, the force required to pierce human skin was calculated in order to verify that microneedles insert human skin without buckling or fracturing. Finite Element Analysis (FEA) was used to simulate the insertion process and complement the experimental findings. Furthermore, permeation studies were carried out in order to compare diffusion of two model dyes with different molecular weight namely; FITC-Dextran (M.W.:4000 Da) and calcein (M.W.:622.54 Da) across full thickness human skin in vitro before and after skin treatment with microneedles. Finally, visualization studies enabled illustration of microneedle perforation sites. The results showed that the manufactured 3D printed microneedle arrays penetrate sufficiently human skin and can significantly enhance the transport of the dyes across human skin., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
149. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications.
- Author
-
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, and Bikiaris D
- Subjects
- Bone Regeneration, Spectrum Analysis, Thermogravimetry, Tissue Scaffolds, Biocompatible Materials chemistry, Ceramics chemistry, Diphosphonates chemistry, Polyesters chemistry, Tissue Engineering
- Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO
2 -CaO-P2 O5 and SiO2 -SrO-P2 O5 ) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.- Published
- 2019
- Full Text
- View/download PDF
150. Controlled Release of 5-Fluorouracil from Alginate Beads Encapsulated in 3D Printed pH-Responsive Solid Dosage Forms.
- Author
-
Gioumouxouzis CI, Chatzitaki AT, Karavasili C, Katsamenis OL, Tzetzis D, Mystiridou E, Bouropoulos N, and Fatouros DG
- Subjects
- Alginic Acid pharmacokinetics, Calorimetry, Differential Scanning methods, Delayed-Action Preparations chemistry, Delayed-Action Preparations pharmacokinetics, Dosage Forms, Drug Liberation, Excipients chemistry, Excipients pharmacokinetics, Fluorouracil pharmacokinetics, Hydrogen-Ion Concentration, Tablets chemistry, Technology, Pharmaceutical methods, X-Ray Diffraction methods, Alginic Acid chemistry, Fluorouracil chemistry, Printing, Three-Dimensional
- Abstract
Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments' mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.