101. Self-similar measures: asymptotic bounds for the dimension and Fourier decay of smooth images
- Author
-
Mosquera, Carolina Alejandra and Shmerkin, Pablo Sebastian
- Subjects
purl.org/becyt/ford/1 [https] ,Matemáticas ,self-similar measures ,purl.org/becyt/ford/1.1 [https] ,Fourier decay ,correlation dimension ,CIENCIAS NATURALES Y EXACTAS ,Matemática Pura - Abstract
R. Kaufman and M. Tsujii proved that the Fourier transform of self-similar measures has a power decay outside of a sparse set of frequencies. We present a version of this result for homogeneous self-similar measures, with quantitative estimates, and derive several applications: (1) non-linear smooth images of homogeneous self-similar measures have a power Fourier decay, (2) convolving with a homogeneous self-similar measure increases correlation dimension by a quantitative amount, (3) the dimension and Frostman exponent of (biased) Bernoulli convolutions tend to 1 as the contraction ratio tends to 1, at an explicit quantitative rate. Fil: Mosquera, Carolina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
- Published
- 2018