101. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii.
- Author
-
Ranga Rao A, Sarada R, and Ravishankar GA
- Subjects
- Biomass, Biotechnology methods, Carbohydrate Metabolism, Carbon Dioxide metabolism, Carotenoids metabolism, Chlorophyta classification, Chlorophyta drug effects, Chlorophyta metabolism, Fatty Acids metabolism, Hydrocarbons chemistry, Microbiological Techniques, Carbon Dioxide pharmacology, Chlorophyta growth & development, Hydrocarbons metabolism
- Abstract
Botryococcus braunii is a green colonial fresh water microalga and it is recognized as one of the renewable resources for production of liquid hydrocarbons. CFTRI-Bb-1 and CFTRI-Bb-2 have been reported for the first time and their performance with regard to growth and biochemical profile is presented here. The present study focused on effect of carbon dioxide (CO2) on biomass, hydrocarbon, carbohydrate production, fatty acid profile, and carotenoid content in various species of B. braunii (LB-572, SAG 30.81, MCRC-Bb, N-836, CFTRI-Bb-1, and CFTRI-Bb-2) at 0.5, 1.0, and 2.0% (v/v) levels using a two-tier flask. CO2 at 2.0% (v/v) level enhanced growth of the organism, and a two-fold increase in biomass and carotenoid contents was observed in all the B. braunii strains studied compared with control culture (without CO2 supplementation). At 1% and 2% (v/v) CO2 concentrations, palmitic acid and oleic acid levels increased by 2.5 to 3 folds in one of the strains of B. braunii (LB-572). Hydrocarbon content was found to be above 20% at 2% CO2 level in the B. braunii LB-572, CFTRI-Bb-2, CFTRI-Bb-1, and N-836 strains, whereas it was less than 20% in the SAG 30.81 and MCRC-Bb strains compared with control culture. This culture methodology will provide information on CO2 requirement for growth of algae and metabolite production. B. braunii spp. can be grown at the tested levels of CO2 concentration without much influence on culture pH.
- Published
- 2007