101. α-Synuclein oligomers form by secondary nucleation.
- Author
-
Xu, Catherine K., Meisl, Georg, Andrzejewska, Ewa A., Krainer, Georg, Dear, Alexander J., Castellana-Cruz, Marta, Turi, Soma, Edu, Irina A., Vivacqua, Giorgio, Jacquat, Raphaël P. B., Arter, William E., Spillantini, Maria Grazia, Vendruscolo, Michele, Linse, Sara, and Knowles, Tuomas P. J.
- Subjects
PARKINSON'S disease ,SINGLE molecules ,IONIC strength ,DRUG target ,MEMBRANE lipids - Abstract
Oligomeric species arising during the aggregation of α-synuclein are implicated as a major source of toxicity in Parkinson's disease, and thus a major potential drug target. However, both their mechanism of formation and role in aggregation are largely unresolved. Here we show that, at physiological pH and in the absence of lipid membranes, α-synuclein aggregates form by secondary nucleation, rather than simple primary nucleation, and that this process is enhanced by agitation. Moreover, using a combination of single molecule and bulk level techniques, we identify secondary nucleation on the surfaces of existing fibrils, rather than formation directly from monomers, as the dominant source of oligomers. Our results highlight secondary nucleation as not only the key source of oligomers, but also the main mechanism of aggregate formation, and show that these processes take place under conditions which recapitulate the neutral pH and ionic strength of the cytosol. The formation of protein aggregates is a hallmark of Parkinson's disease, with small oligomeric species implicated as a major source of toxicity. In this work, Xu et al. determine their mechanism of formation and role in aggregation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF