101. Applications of Raman Microscopy/Spectroscopy-Based Techniques to Plant Disease Diagnosis
- Author
-
Ioannis Vagelas, Ioannis Manthos, and Thomas Sotiropoulos
- Subjects
plant disease detection ,rapid identification ,Raman spectra ,Raman analysis ,investigation of plant tissue ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Plant diseases pose a significant threat to plant and crop health, leading to reduced yields and economic losses. The traditional methods for diagnosing plant diseases are often invasive and time-consuming and may not always provide accurate results. In recent years, there has been growing interest in utilizing Raman microscopy as a non-invasive and label-free technique for plant disease diagnosis. Raman microscopy is a powerful analytical tool that can provide detailed molecular information about samples by analyzing the scattered light from a laser beam. This technique has the potential to revolutionize plant disease diagnosis by offering rapid and accurate detection of various plant pathogens, including bacteria and fungi. One of the key advantages of Raman microscopy/spectroscopy is its ability to provide real-time and in situ analyses of plant samples. By analyzing the unique spectral fingerprints of different pathogens, researchers can quickly identify the presence of specific diseases without the need for complex sample preparation or invasive procedures. This article discusses the development of a Raman microspectroscopy system for disease diagnosis that can accurately detect and identify various plant pathogens, such as bacteria and fungi.
- Published
- 2024
- Full Text
- View/download PDF