101. Aneutronic Fusion in Collision of Oppositely Directed Plasmoids
- Author
-
Asghar Sadighzadeh, H. Ghafoori Fard, A. A. Zaeem, and Morteza Habibi
- Subjects
Physics ,Fusion ,Physics and Astronomy (miscellaneous) ,Plasmoid ,Aneutronic fusion ,Plasma ,Fusion power ,Condensed Matter Physics ,Collision ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,Distribution function ,Physics::Plasma Physics ,0103 physical sciences ,Helion ,010306 general physics - Abstract
Tri-Alpha and Helion energy companies have proposed an approach as the near future fusion reactor. The method used in this kind of reactor for attaining high fusion yield is based on the formation and throwing of two plasmoids toward each other. In this study, the optimized reaction rate for interpenetration of two head on colliding plasmoids is investigated. Calculations are performed by supposing the velocity of plasmoids ions as Maxwellian distribution function. Fusion output-to-input power ratio (Q factor) was computed by evaluation of the velocity-averaged cross sections and also ion−electron and ion−ion Coulomb power loss. A fluid model including a computational code has been used for the precise calculations of fusion power balance. The optimum interpenetration velocity and plasmoids parameters required to reach the ignition are studied for aneutronic fusion fuels, such as p–11B and D–3He, as well as D−T and D−D fuels. The results of investigation show that the breakeven is attainable in specific collision velocity and plasma temperature for each fuel. Also, the plasma density has to be around 1020 ions/cm3.
- Published
- 2018
- Full Text
- View/download PDF