101. LMest: Generalized Latent Markov Models for longitudinal continuous and categorical data
- Author
-
Bartolucci, F, Bartolucci, F, Pandolfi, S, Pennoni, F, Farcomeni, A, Serafini, A, PANDOLFI, SARA, Bartolucci, F, Bartolucci, F, Pandolfi, S, Pennoni, F, Farcomeni, A, Serafini, A, and PANDOLFI, SARA
- Abstract
La libreria LMest permette di specificare e stimare i modelli Hidden o Latent Markov (LM) per l'analisi di dati longitudinali sia continui che categoriali. Le covariate sono presenti nei modelli in base ad adeguate parametrizzazioni. Varie tipologie di modelli possono essere stimati utilizzando la struttura dei dati sia in formato long che wide. La stima di massima verosimiglianza è ottenuta con l'algoritmo Expectation-Maximization implementato attraverso routines Fortran. La libreria permette di trattare risposte mancanti, drop-out e valori mancanti secondo una struttura non-monotona. Gli errori standard per i parametri stimati vengono calcolati attraverso la matrice di informazione ottenuta in modo esatto oppure approssimato. La libreria include alcuni esempi e dei dati sia reali che simulati., The package LMest is a framework for specifying and fitting Latent (or Hidden) Markov (LM) models, which are tailored for the analysis of longitudinal continuous and categorical data. Covariates are also included in the model specification through suitable parameterizations. Different LM models are estimated through specific functions requiring a data frame in long format. Maximum likelihood estimation of model parameters is performed through the Expectation-Maximization algorithm, which is implemented by relying on Fortran routines. The package allows us to deal with missing responses, including drop-out and non-monotonic missingness, under the missing-at-random assumption. Standard errors for the parameter estimates are obtained by exact computation of the information matrix or through reliable numerical approximations of this matrix. The package also provides some examples and real and simulated data sets.
- Published
- 2019