101. Contributions aux méthodes numériques pour traiter les non linéarités et les discontinuités dans les matériaux hétérogènes
- Author
-
Monteiro, Eric, STAR, ABES, Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est, Qi-Chang Hé, and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM)
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,Homogénéisation non linéaire ,Réduction de modèle ,Interfaces imparfaites ,Nonlinear homogenization ,Model reduction ,[SPI.OTHER] Engineering Sciences [physics]/Other ,Méthodes multi-échelles ,Cell spreading ,Imperfect interfaces ,Etalement de cellule ,XFEM/Level-set ,Multi-scale method - Abstract
Motivated by the study of biological tissues, this work contributes to developing numerical tools to predict the mechanical response of nonlinear heterogeneous materials in which the energies of interfaces can no longer be ignored. First, a computational homogenization strategy combined with a model reduction technique based on the proper orthogonal decomposition is implemented in the cases of large elastic deformations and highly nonlinear conduction. The interfaces between the different phases of a composite are described by means of a coherent interface model and taken into account numerically by an extended finite element method in tandem with a level-set technique. Finally, experimental results of single cell spreading between two fixed parallel microplates are exploited through finite element modelling. Our two models show that the bilayer membrane and the actin cortex do not play a significant role in the cell mechanical response, Motivé par l'étude de tissus biologiques, ce travail contribue aux développements d'outils numériques permettant de prédire la réponse mécanique de matériaux hétérogènes non linéaires dans lesquels les énergies d'interfaces deviennent prépondérantes. Ainsi, une méthode d'homogénéisation multi échelle combinée à une technique de réduction de modèle basée sur la décomposition orthogonale aux valeurs propres est proposée dans un cadre thermique et hyperélastique. Les énergies d'interfaces entre les différentes phases des composites sont décrites par un modèle d'interface cohérent et prises en compte numériquement par une approche liant la méthode des éléments finis étendus et la méthode level-set. Une étude de l'étalement d'une cellule vivante entre deux lamelles fixes est ensuite réalisée. Les deux modèles utilisés pour les simulations montrent que l'assemblage cortex d'actine-membrane plasmique ne joue qu'un rôle minime dans la réponse mécanique cellulaire
- Published
- 2010