186 results on '"Michel Ledoux"'
Search Results
102. The Concentration of Measure Phenomenon
- Author
-
Michel Ledoux
- Published
- 2005
- Full Text
- View/download PDF
103. Concentration and geometry
- Author
-
Michel Ledoux
- Subjects
Materials science ,Geometry - Published
- 2005
- Full Text
- View/download PDF
104. Isoperimetric and functional examples
- Author
-
Michel Ledoux
- Subjects
Pure mathematics ,Isoperimetric inequality ,Mathematics - Published
- 2005
- Full Text
- View/download PDF
105. Concentration in product spaces
- Author
-
Michel Ledoux
- Subjects
business.industry ,Product (mathematics) ,Process engineering ,business ,Mathematics - Published
- 2005
- Full Text
- View/download PDF
106. Selected applications
- Author
-
Michel Ledoux
- Published
- 2005
- Full Text
- View/download PDF
107. Sharp bounds on Gaussian and empirical processes
- Author
-
Michel Ledoux
- Subjects
symbols.namesake ,Gaussian ,symbols ,Statistical physics ,Mathematics ,Gaussian random field - Published
- 2005
- Full Text
- View/download PDF
108. Séminaire de Probabilités XXXVIII
- Author
-
Michel Émery, Michel Ledoux, Séminaire de probabilités, and Marc Yor
- Subjects
Pure mathematics ,Mathematics::Probability ,Stochastic process ,Hypoelliptic operator ,Mathematical analysis ,Predictable process ,Martingale (probability theory) ,Random walk ,Lévy process ,Brownian motion ,Mathematics ,Probability measure - Abstract
Processus de Levy: R.A. Doney: Tanaka's construction for random walks and Levy processes.- R.A. Doney: Some excursion calculations for spectrally one-sided Levy processes.- A.E. Kyprianou, Z. Palmowski: A martingale review of some fluctuation theory for spectrally megative Levy processes.- M.R. Pistorius: A potential-theoretical review of some exit problems of spectrally negative Levy processes.- L. Nguyen-Ngoc, M. Yor: Some martingales associated to reflected Levy processes.- K.B. Erickson, R.A. Maller: Generalised Ornstein-Uhlenbeck processes and the convergence of Levy integrals.- Autres Exposes: P. Fougeres: Spectral gap for log-concave probability measures on the real line.- L. Godefroy: Propriete de Choquet-Deny et fonctions harmoniques sur les hypergroupes commutatifs.- M. Buiculescu: Exponential decay parameters associated with excessive measures.- V. Grecca: Positive bilinear mappings associated with stochastic processes.- A. Jakubowski: An almost sure approximation for the predictable process in the Doob-Meyer decomposition theorem.- A. Cherny, A. Shiryaev: On stochastic integrals up to infinity and predictable criteria for integrability.- Y. Kabanov, C. Stricker: Remarks on the true no-arbitrage property.- H. Buhler: Information-equivalence: On filtrations created by independent increments.- M. Zakai: Rotations and tangent processes on Wiener space.- I. Shigekawa: Lp multiplier theorem for the Hodge-Kodaira operator.- G. Peccati, C.A. Tudor: Gaussian limits for vector-valued multiple stochastic integrals.- J. Rosen: Derivatives of self-intersection local times.- N. Eisenbaum, C. A. Tudor: On squared fractional Brownian motions.- A. Ayache et al: Regularity and identification of generalised miltifractional Gaussian processes.- F. Benaych-Georges: Failure of the Raikov theorem for free random variables.- G. Aubrun: Aharp small deviation inequality for the largest eigenvalue of a randommatrix.- F. Baudoin: The tangent space to a hypoelliptic diffusion and applications.- A. Bencherif-Madani, E. Pardoux: Homogenization of a diffusion with locally periodic coefficients.
- Published
- 2005
- Full Text
- View/download PDF
109. Distributions of Invariant Ensembles from the Classical Orthogonal Polynimials: the Discrete Case
- Author
-
Michel Ledoux
- Subjects
Statistics and Probability ,Laplace transform ,Markov chain ,Differential equation ,Mathematical analysis ,Mathematics::Classical Analysis and ODEs ,Matrix (mathematics) ,Orthogonal polynomials ,Integration by parts ,Statistical physics ,Statistics, Probability and Uncertainty ,Invariant (mathematics) ,Factorial moment ,Mathematics - Abstract
We examine the Charlier, Meixner, Krawtchouk and Hahn discrete orthogonal polynomial ensembles, deeply investigated by K. Johansson, using integration by parts for the underlying Markov operators, differential equations on Laplace transforms and moment equations. As for the matrix ensembles, equilibrium measures are described as limits of empirical spectral distributions. In particular, a new description of the equilibrium measures as adapted mixtures of the universal arcsine law with an independent uniform distribution is emphasized. Factorial moment identities on mean spectral measures may be used towards small deviation inequalities on the rightmost charges at the rate given by the Tracy-Widom asymptotics.
- Published
- 2005
- Full Text
- View/download PDF
110. Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case
- Author
-
Michel Ledoux
- Subjects
Statistics and Probability ,Recurrence relation ,Laplace transform ,82B44 ,Differential equation ,82B31 ,Mathematical analysis ,Eigenfunction ,33C99 ,Classical orthogonal polynomials ,60J25 ,Laguerre polynomials ,Statistics, Probability and Uncertainty ,60F99 ,Random matrix ,Eigenvalues and eigenvectors ,60J60 ,Mathematics - Abstract
Following the investigation by U. Haagerup and S. Thorbjornsen, we present a simple differential approach to the limit theorems for empirical spectral distributions of complex random matrices from the Gaussian, Laguerre and Jacobi Unitary Ensembles. In the framework of abstract Markov diffusion operators, we derive by the integration by parts formula differential equations for Laplace transforms and recurrence equations for moments of eigenfunction measures. In particular, a new description of the equilibrium measures as adapted mixtures of the universal arcsine law with an independent uniform distribution is emphasized. The moment recurrence relations are used to describe sharp, non asymptotic, small deviation inequalities on the largest eigenvalues at the rate given by the Tracy-Widom asymptotics.
- Published
- 2004
- Full Text
- View/download PDF
111. Séminaire de Probabilités XXXVI
- Author
-
Michel Émery, Marc Yor, Jacques Azéma, Michel Ledoux, and Séminaire de probabilités
- Subjects
Pure mathematics ,010102 general mathematics ,Mathematical analysis ,Vector bundle ,01 natural sciences ,Fock space ,Sobolev inequality ,Sobolev space ,010104 statistics & probability ,Stochastic differential equation ,Mathematics::Probability ,Laguerre polynomials ,0101 mathematics ,Martingale (probability theory) ,Random matrix ,Mathematics - Abstract
Cours specialises et exposes thematiques: A. Guionnet, B. Zegarlinski: Lectures on Logarithmic Sobolev inequalities.- A. Lejay, L. Pastur: Matrices aleatoires : statistique asymptotique des valeurs propres.- N. O'Connell: Random matrices, non-colliding particle systems and queues.- Exposes: A. Dermoune, O. Moutsinga: Generalized variational principles.- D. Chafai: Gaussian maximum of entropy and reversed log-Sobolev inequality.- L. Miclo: About projections of logarithmic Sobolev inequalities.- L. Miclo: Sur l'inegalite de Sobolev logarithmique des operateurs de Laguerre a petit parametre.- A. Bentaleb: Sur les fonctions extremales des inegalites de Sobolev des operateurs de diffusion.- C. Donati-Martin, Y. Hu: Penalization of the Wiener measure and principal values.- C. Leuridan: Theoreme de Ray-Knight dans un arbre : Une approche algebrique.- R. Bass: Stochastic differential equations driven by symmetric stable processes.- T. Simon: Support d'une equation d' Ito avec sauts en dimension 1.- N. Eisenbaum: A Gaussian sheet connected to symmetric Markov chains.- C. Leuridan: Filtration d'une marche aleatoire stationnaire sur le cercle.- S. Beghdadi-Sakrani: Une martingale non pure, dont la filtration est brownienne.- J. Hannig: On filtrations related to purely discontinuous martingales.- S. Beghdadi-Sakrani: Calcul stochastique pour des mesures signees.- J. Jacod: On processes with conditional independent increments and stable convergence in law.- V. Grecea: Duality and quasi-continuity for supermartingales.- Y. Kabanov, C. Stricker: On the true submartingale property, d'apres Schachermayer.- C. Stricker: Simple strategies in exponential utility maximization.- M. Arnaudon, A. Thalmaier: Horizontal martingales in vector bundles.- D. Kurtz: Representation nucleaire des martingales d'Azema.- S. Attal: Approximating the Fock space with the toy Fock space.- Corrections auxvolumes anterieurs.
- Published
- 2003
- Full Text
- View/download PDF
112. Séminaire de Probabilités XXXVII
- Author
-
Jacques Azéma, Marc Yor, Michel Émery, and Michel Ledoux
- Subjects
Pure mathematics ,Banach space ,010103 numerical & computational mathematics ,01 natural sciences ,Stable process ,Combinatorics ,010104 statistics & probability ,Stochastic differential equation ,Mathematics::Probability ,Diffusion process ,Local martingale ,0101 mathematics ,Martingale (probability theory) ,Random matrix ,Brownian motion ,Mathematics - Abstract
Preface.- F.B. Knight: An Impression of P.A. Meyer as Deus Ex Machina.- Advanced course: A. Lejay: An introduction to rough paths.- Talks: D. Bakry, O. Mazet : Characterization of Markov semigroups on R associated to some families of orthogonal polynomials.- P. Cheridito: Representations of Gaussian measures that are equivalent to Wiener measure.- L. Galtchouk: On the reduction of a multidimensional continuous martingale to a Brownian motion.- I. Meilijson: The time to a given drawdown in Brownian motion.- A. Lachal: Application de la theorie des excursions a l'integrale du mouvement Brownien.- T. Mountford: Brownian sheet local time and bubbles.- K. Hirano: On the maximum of a diffusion process in a random Levy environment.- D. Khoshnevisan: The codimension of the zeros of a stable process in random scenery.- J. Brossard: Deux notions equivalentes d'unicite en loi pour les equations differentielles stochastiques.- Z. Brzezniak, A. Carroll : Approximation of the Wong-Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces.- F. Delarue: Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme.- G. Miermont, J. Schweinsberg: Self-similar fragmentations and stable subordinators.- M. Ledoux: A remark on hypercontractivity and tail inequalities for the largest eigenvalues of random matrices.- Ya. Doumerc: A note on representations of eigenvalues of classical Gaussian matrices.- E. Strasser: Necessary and sufficient conditions for the supermartingale property of a stochastic integral with respect to a local martingale.- M. Rasonyi: A remark on the superhedging theorem under transaction costs.- I. Rosu, D. Stroock: On the derivation of the Black-Scholes formula.- P. del Moral, A. Doucet: On a class of genealogical and interacting Metropolis models.
- Published
- 2003
- Full Text
- View/download PDF
113. A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices
- Author
-
Michel Ledoux
- Subjects
symbols.namesake ,Pure mathematics ,Hermite polynomials ,Mathematics::Probability ,Distribution (number theory) ,Simple (abstract algebra) ,Gaussian ,Laguerre polynomials ,symbols ,Eigenfunction ,Random matrix ,Eigenvalues and eigenvectors ,Mathematics - Abstract
We point out a simple argument relying on hypercontractivity to describe tail inequalities on the distribution of the largest eigenvalues of random matrices at the rate given by the Tracy–Widom distribution. The result is illustrated on the known examples of the Gaussian and Laguerre unitary ensembles. The argument may be applied to describe the generic tail behavior of eigenfunction measures of hypercontractive operators.
- Published
- 2003
- Full Text
- View/download PDF
114. Characterisation of an Air-Blast Injection Device with Forced Periodic Entries
- Author
-
Olaf Diers, Michel Ledoux, Pierre Gajan, and Fabrice Giuliani
- Subjects
Engineering ,Injection device ,business.industry ,Flow (psychology) ,Mechanical engineering ,Combustion instability ,Air blast ,business ,Instability - Abstract
This research project is related to the control of combustion instability occurring intermittently in aeroengines. The unsteadiness of the flow is induced by a particular instability called Combustion-Driven Oscillations (CDO).
- Published
- 2002
- Full Text
- View/download PDF
115. Logarithmic Sobolev Inequalities for Unbounded Spin Systems Revisited
- Author
-
Michel Ledoux
- Subjects
symbols.namesake ,Logarithm ,Mathematical analysis ,Analytic model ,Spin system ,symbols ,Poincaré inequality ,Log sum inequality ,Hamiltonian (quantum mechanics) ,Mathematical proof ,Mathematics ,Mathematical physics ,Sobolev inequality - Abstract
We analyze recent proofs of decay of correlations and logarithmic Sobolev inequalities for unbounded spin systems in the perturbative regime developed by B. Zegarlinski, N. Yoshida, B. Helffer, Th. Bodineau. We investigate to this task a simple analytic model. Proofs are short and self-contained.
- Published
- 2001
- Full Text
- View/download PDF
116. Paneitz-type operators and applications
- Author
-
Emmanuel Hebey, Zindine Djadli, Michel Ledoux, Analyse, Géométrie et Modélisation (AGM - UMR 8088), CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS), and Abdelmoumene, Amina
- Subjects
010101 applied mathematics ,Algebra ,General Mathematics ,010102 general mathematics ,58J60 ,0101 mathematics ,Type (model theory) ,35B45 ,01 natural sciences ,Mathematics - Published
- 2000
117. Probabilité
- Author
-
Philippe Barbe, Michel Ledoux, Philippe Barbe, and Michel Ledoux
- Subjects
- Probabilities
- Abstract
Ce livre s'adresse aux étudiants de licence ou master de mathématiques (L3-M1) et à ceux qui préparent le Capes ou l'agrégation. Il est consacré à l'exposition des notions de base du calcul des probabilités. Il s'appuie de façon essentielle sur la théorie de la mesure et de l'intégration de Lebesgue. Les mesures de probabilité discrètes ou à densité sont donc étudiées dans un même cadre, au titre d'exemples privilégiés les plus usuels. Après des rappels sur l'intégration, l'ouvrage développe successivement les thèmes suivants : lois de variables aléatoires, indépendance et addition des variables aléatoires indépendantes, convergence de suites de variables aléatoires et théorèmes limites, conditionnement, martingales à temps discret et chaînes de Markov à espace d'états dénombrable. Chaque chapitre est complété par une série d'exercices destinés à approfondir et illustrer les éléments de la théorie venant d'être introduits.
- Published
- 2008
118. Concentration of measure and logarithmic Sobolev inequalities
- Author
-
Michel Ledoux
- Subjects
Logarithm ,Dirichlet form ,Concentration of measure ,Mathematical analysis ,Isoperimetric inequality ,Lipschitz continuity ,Gaussian measure ,Mathematics ,Sobolev inequality ,Logarithmic sobolev inequality - Published
- 1999
- Full Text
- View/download PDF
119. Méthodes fonctionnelles pour des grandes déviations quasi-gaussiennes
- Author
-
Michel Ledoux, Djalil Chafaï, Laboratoire de Statistique et Probabilités (LSP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Semigroup ,Gaussian ,010102 general mathematics ,Mathematical analysis ,Banach space ,General Medicine ,01 natural sciences ,Upper and lower bounds ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,symbols.namesake ,Probability theory ,Boltzmann constant ,symbols ,Applied mathematics ,Large deviations theory ,0101 mathematics ,Hamiltonian (quantum mechanics) ,Mathematics - Abstract
International audience; Some Gaussian functional inequalities have simple generalizations to some Gaussianlike cases. They allow us to establish Gaussian-like Large Deviations Principles and bounds via Gaussian concentration and shift inequalities for certain families of Boltzmann measures and laws of diffusion semigroups in short time. Beyond the results themselves, we would like to emphasize here the method and the symmetry of the arguments used for upper and lower bounds by means of the functional inequalities.
- Published
- 1999
- Full Text
- View/download PDF
120. Séminaire de Probabilités XXXII
- Author
-
Michel Émery, Michel Ledoux, Séminaire de probabilités, Marc Yor, and Jacques Azéma
- Subjects
Sobolev space ,Combinatorics ,Pure mathematics ,Stochastic differential equation ,Mathematics::Probability ,Local time ,Laguerre polynomials ,Uniqueness ,Martingale (probability theory) ,Brownian motion ,Vector space ,Mathematics - Abstract
Sous-mesures symetriques sur un ensemble fini.- Sur une inegalite de Sobolev logarithmique pour une diffusion unidimensionnelle.- Sur les minorations des constantes de Sobolev et de Sobolev logarithmiques pour les operateurs de Jacobi et de Laguerre.- Quand l'inegalite log-Sobolev implique l'inegalite de trou spectral.- Trous spectraux a basse temperature: un contre-exemple a un comportement asymptotique escompte.- Some remarks on the optional decomposition theorem.- Separation d'une sur-et d'une sousmartingale par une martingale.- Closedness of some spaces of stochastic integrals.- Homogeneous diffusions on the Sierpinski gasket.- Almost sure path properties of Branching Diffusion Processes.- Criteria of regularity at the end of a tree.- Normalized stochastic integrals in topological vector spaces.- Pathwise uniqueness and approximation of solutions of stochastic differential equations.- Stability of stochastic differential equations in manifolds.- Propagation trajectorielle du chaos pour les lois de conservation scalaire.- Some calculations for perturbed Brownian motion.- Perturbed bessel processes.- The maximum maximum of a martingale.- Autour d'un theoreme de tsirelson sur des filtrations Browniennes et non Browniennes.- Sur un theoreme de tsirelson relatif a des mouvements browniens correles et a la nullite de certains temps locaux.- A remark on Slutsky's theorem.- Quelques calculs de compensateurs impliquant l'injectivite de certains processus croissants.- The Brownian Burglar: conditioning Brownian motion by its local time process.- On the upcrossing chains of stopped Brownian motion.- Le theoreme de ray-knight a temps fixe.- Point le plus visite par un mouvement brownien avec derive.- Brownian motion, excursions, and matrix factors.- Sur les temps de coupure des marches aleatoires reflechies.
- Published
- 1998
- Full Text
- View/download PDF
121. Martingale Representation and a Simple Proof of Logarithmic Sobolev Inequalities on Path Spaces
- Author
-
Mireille Capitaine, Elton P. Hsu, and Michel Ledoux
- Subjects
Statistics and Probability ,Riemannian manifold ,Logarithm ,Mathematical analysis ,58G32 ,Sobolev inequality ,Mathematics::Probability ,Antisymmetry ,Spectral gap ,Integration by parts ,Mathematics::Differential Geometry ,Martingale representation ,Brownian motion ,Statistics, Probability and Uncertainty ,Martingale (probability theory) ,logarithmic Sobolev inequality ,Mathematics - Abstract
We show how the Clark-Ocone-Haussmann formula for Brownian motion on a compact Riemannian manifold put forward by S. Fang in his proof of the spectral gap inequality for the Ornstein-Uhlenbeck operator on the path space can yield in a very simple way the logarithmic Sobolev inequality on the same space. By an appropriate integration by parts formula the proof also yields in the same way a logarithmic Sobolev inequality for the path space equipped with a general diffusion measure as long as the torsion of the corresponding Riemannian connection satisfies Driver's total antisymmetry condition.
- Published
- 1997
- Full Text
- View/download PDF
122. Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator
- Author
-
Dominique Bakry and Michel Ledoux
- Subjects
Pure mathematics ,Generator (computer programming) ,Markov chain ,General Mathematics ,Mathematical analysis ,Poincaré inequality ,53C20 ,58G30 ,Sobolev inequality ,symbols.namesake ,symbols ,47D07 ,Mathematics ,Sobolev spaces for planar domains - Published
- 1996
123. Isoperimetry and Gaussian analysis
- Author
-
Michel Ledoux
- Subjects
symbols.namesake ,Gaussian analysis ,Mathematical analysis ,symbols ,Isoperimetric inequality ,Gaussian measure ,Rate function ,Gaussian process ,Mathematics - Published
- 1996
- Full Text
- View/download PDF
124. Lectures on Probability Theory and Statistics
- Author
-
Roland Dobrushin, Piet Groeneboom, and Michel Ledoux
- Published
- 1996
- Full Text
- View/download PDF
125. Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter
- Author
-
Michel Ledoux
- Subjects
Sobolev space ,Pure mathematics ,Real-valued function ,Bounded function ,58G32 ,60J99 ,47D07 ,Riemannian manifold ,Lipschitz continuity ,Exponential polynomial ,Laplace operator ,Mathematics ,Sobolev inequality - Abstract
We present short and elementary proofs of three recent results on exponential integrability of Lipschitz functions and quantitative bounds on the diameter under logarithmic Sobolev inequalities due respectively to S. Aida, T. Masuda, I. Shigekawa [A-M-S], D. Bakry, D. Michel [B-M] and L. Saloff-Coste [SC]. Although the first two results we aim to simplify deal with abstract Markov generators on probability spaces, we would like to briefly present the purpose of this note in the setting of the Laplace-Beltrami operator ∆ on a complete connected Riemannian manifold M of finite volume V . We will consider the normalized measure dμ = 1 V dv where dv denote the Riemannian measure and let ∇ be the Riemannian gradient on M . For a nonnegative bounded (say) real valued function f on M , let E(f) denote the entropy of f with respect to μ defined by E(f) = ∫ f log fdμ− ∫ fdμ log (∫ fdμ ) . We will say that ∆ satisfies a logarithmic Sobolev inequality if there exists ρ > 0 such that for all C∞, compactly supported or bounded, functions f on M , ρE(f) ≤ 2 ∫ f(−∆f)dμ = 2 ∫ |∇f |dμ. The largest possible value ρ0 for ρ is called the logarithmic Sobolev constant of the Laplacian ∆ on M , or simply of M . More generaly, one may consider, following [B], inequalities between entropy and energy of the type E(f) ≤ Φ (∥∥|∇f |∥∥2 2 ) for all C∞ bounded functions f with ‖f‖2 = 1 where Φ is a nonnegative function on [0,∞). With these notations, S. Aida, T. Masuda and I. Shigekawa [A-M-S] recently showed that, when ρ0 > 0, whenever f is a function on M such that ‖|∇f |‖∞ ≤ 1 (that is f is Lipschitz with Lipschitz norm less than or equal to 1), then, for every 0 < α < ρ0/2
- Published
- 1995
- Full Text
- View/download PDF
126. Probabilité
- Author
-
Philippe Barbe, Michel Ledoux, Philippe Barbe, and Michel Ledoux
- Abstract
Ce livre s'adresse aux étudiants de licence ou master de mathématiques (L3-M1) et à ceux qui préparent le Capes ou l'agrégation. Il est consacré à l'exposition des notions de base du calcul des probabilités. Il s'appuie de façon essentielle sur la théorie de la mesure et de l'intégration de Lebesgue. Les mesures de probabilité discrètes ou à densité sont donc étudiées dans un même cadre, au titre d'exemples privilégiés les plus usuels. Après des rappels sur l'intégration, l'ouvrage développe successivement les thèmes suivants : lois de variables aléatoires, indépendance et addition des variables aléatoires indépendantes, convergence de suites de variables aléatoires et théorèmes limites, conditionnement, martingales à temps discret et chaînes de Markov à espace d'états dénombrable. Chaque chapitre est complété par une série d'exercices destinés à approfondir et illustrer les éléments de la théorie venant d'être introduits.
- Published
- 2007
127. Séminaire de Probabilités XXXII
- Author
-
Jacques Azema, Michel Emery, Michel Ledoux, Marc Yor, Jacques Azema, Michel Emery, Michel Ledoux, and Marc Yor
- Subjects
- Probabilities
- Abstract
All the papers in the volume are original research papers, discussing fundamental properties of stochastic processes. The topics under study (martingales, filtrations, path properties, etc.) represent an important part of the current research performed in 1996-97 by various groups of probabilists in France and abroad.
- Published
- 2007
128. Rademacher Averages
- Author
-
Michel Ledoux and Michel Talagrand
- Published
- 1991
- Full Text
- View/download PDF
129. The Central Limit Theorem
- Author
-
Michel Ledoux and Michel Talagrand
- Subjects
Moment (mathematics) ,Pure mathematics ,Convergence of random variables ,Picard–Lindelöf theorem ,Law of large numbers ,Banach space ,Law of the iterated logarithm ,Limit (mathematics) ,Mathematics ,Central limit theorem - Abstract
The study of strong limit theorems for sums of independent random variables such as the strong law of large numbers or the law of the iterated logarithm in the preceding chapters showed that in Banach spaces these can only be reasonably understood when the corresponding weak property, that is tightness or convergence in probability, is satisfied. It was shown indeed that under some natural moment conditions, the strong statements actually reduce to the corresponding weak ones. On the line, or in finite dimensional spaces, the moment conditions usually automatically ensure the weak limiting property. As we pointed out, this is no longer the case in general Banach spaces.
- Published
- 1991
- Full Text
- View/download PDF
130. Notation
- Author
-
Michel Ledoux and Michel Talagrand
- Published
- 1991
- Full Text
- View/download PDF
131. The Strong Law of Large Numbers
- Author
-
Michel Ledoux and Michel Talagrand
- Subjects
Section (fiber bundle) ,Pure mathematics ,Law of large numbers ,Banach space ,Law of the iterated logarithm ,Isoperimetric inequality ,Random variable ,Classical limit ,Mathematics - Abstract
In this chapter and in the next one, we present respectively the strong law of large numbers and the law of the iterated logarithm for sums of independent Banach space valued random variables. In this study, the isoperimetric approach of Section 6.3 demonstrates its efficiency. We only investigate extensions to vector valued random variables of some of the classical limit theorems such as the laws of large numbers of Kolmogorov and Prokhorov.
- Published
- 1991
- Full Text
- View/download PDF
132. Sums of Independent Random Variables
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
Pure mathematics ,symbols.namesake ,Gaussian ,symbols ,Symmetrization ,Limiting ,Concentration inequality ,Isoperimetric inequality ,Martingale (probability theory) ,Random variable ,Central limit theorem ,Mathematics - Abstract
Sums of independent random variables already appeared in the preceding chapters in some concrete situations (Gaussian and Rademacher averages, representation of stable random variables). On the intuitive basis of central limit theorems which approximate normalized sums of independent random variables by smooth limiting distributions (Gaussian, stable), one would expect that results similar to those presented previously should hold in a sense or in another for sums of independent random variables. The results presented in this chapter go in this direction and the reader will recognize in this general setting the topics covered before: integrability properties, equivalence of moments, concentration, tail behavior, etc. We will mainly describe ideas and techniques which go from simple but powerful observations such as symmetrization (randomization) techniques to more elaborate results like those obtained from the isoperimetric inequality for product measures of Theorem 1.4. Section 6.1 is concerned with symmetrization, Section 6.2 with Hoffmann-Jorgensen’s inequalities and the equivalence of moments of sums of independent random variables. In the last and main section, martingale and isoperimetric methods are developed in this context. Many results presented in this chapter will be of basic use in the study of limit theorems later.
- Published
- 1991
- Full Text
- View/download PDF
133. Type and Cotype of Banach Spaces
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
Pure mathematics ,Law of large numbers ,Eberlein–Šmulian theorem ,Interpolation space ,Probability distribution ,Law of the iterated logarithm ,Banach manifold ,Lp space ,Random variable ,Mathematics - Abstract
The notion of type of a Banach space already appeared in the last chapters on the law of large numbers and the law of the iterated logarithm. We observed there that, in quite general situations, almost sure properties can be reduced to properties in probability or in L P , 0 ≤ p < ∞. Starting with this chapter, we will now study the possibility of a control in probability, or in the weak topology, of probability distributions of sums of independent random variables.
- Published
- 1991
- Full Text
- View/download PDF
134. Stationary Processes and Random Fourier Series
- Author
-
Michel Ledoux and Michel Talagrand
- Subjects
Harmonic analysis ,Algebra ,symbols.namesake ,Discrete-time Fourier transform ,Fourier analysis ,Computer science ,Stochastic process ,Discrete Fourier series ,symbols ,Fourier series ,Cross-spectrum ,Gaussian process - Abstract
In Chapter 11, we evaluated random processes indexed by an arbitrary index set T. In this chapter, we take advantage of some homogeneity properties of T and we investigate in this setting, using the general conclusions of Chapters 11 and 12, the more concrete random Fourier series. The tools developed so far indeed lead to a definitive treatment of those processes with applications to Harmonic Analysis. Our main reference for this chapter is the work by M. B. Marcus and G. Pisier [M-P1], [M-P2] to which we refer for an historical background and accurate references and priorities.
- Published
- 1991
- Full Text
- View/download PDF
135. Regularity of Random Processes
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
Mathematics::Functional Analysis ,Pure mathematics ,symbols.namesake ,Stochastic process ,symbols ,Banach space ,Sample path ,Gaussian process ,Computer Science::Databases ,Mathematics ,Probability measure - Abstract
In Chapter 9 we described how certain conditions on Banach spaces can ensure the existence and the tightness of some probability measures.
- Published
- 1991
- Full Text
- View/download PDF
136. The Law of the Iterated Logarithm
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
Iterated logarithm ,Pure mathematics ,Natural logarithm of 2 ,Napierian logarithm ,Logarithm ,Law of large numbers ,Scalar (mathematics) ,Law of the iterated logarithm ,Isoperimetric inequality ,Mathematics - Abstract
This chapter is devoted to the classical laws of the iterated logarithm of Kolmogorov and Hartman-Wintner-Strassen in the vector valued setting. These extensions both enlighten the scalar statements and describe various new interesting phenomena in the infinite dimensional setting. As in the previous chapter on the strong law of large numbers, the isoperimetric approach proves to be an efficient tool in this study. The main results described here show again how the strong almost sure statement of the law of the iterated logarithm reduces to the corresponding (necessary) statement in probability, under moment conditions similar to those of the scalar case.
- Published
- 1991
- Full Text
- View/download PDF
137. Isoperimetric Inequalities and the Concentration of Measure Phenomenon
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
Pure mathematics ,Geodesic ,Inequality ,Concentration of measure ,Phenomenon ,media_common.quotation_subject ,Mathematical analysis ,Banach space ,Product measure ,Isoperimetric inequality ,Gaussian measure ,Mathematics ,media_common - Abstract
In this first chapter, we present the isoperimetric inequalities which now appear as the crucial concept in the understanding of various concentration inequalities, tail behaviors and integrability theorems in Probability in Banach spaces. These inequalities often arise as the final and most elaborate forms of previous, weaker (but already efficient) inequalities which will be mentioned in their framework throughout the book. In these final forms however, the isoperimetric inequalities and associated concentration of measure phenomena provide the appropriate ideas for an in depth comprehension of some of the most important theorems of the theory.
- Published
- 1991
- Full Text
- View/download PDF
138. Generalities on Banach Space Valued Random Variables and Random Processes
- Author
-
Michel Ledoux and Michel Talagrand
- Subjects
Random field ,Convergence of random variables ,Computer science ,Multivariate random variable ,Stochastic process ,Mathematical analysis ,Calculus ,Random compact set ,Random element ,Random variable ,Algebra of random variables - Abstract
This chapter collects in rather an informal way some basic facts about processes and infinite dimensional random variables. The material that we present actually only appears as the necessary background for the subsequent analysis developed in the next chapters. Only a few proofs are given and many important results are only just mentioned or even omitted. It is therefore recommended to complement, if necessary, these partial bases with the classical references, some of which are given at the end of the chapter.
- Published
- 1991
- Full Text
- View/download PDF
139. Applications to Banach Space Theory
- Author
-
Michel Ledoux and Michel Talagrand
- Published
- 1991
- Full Text
- View/download PDF
140. Probability in Banach Spaces
- Author
-
Michel Ledoux and Michel Talagrand
- Published
- 1991
- Full Text
- View/download PDF
141. Introduction
- Author
-
Michel Ledoux and Michel Talagrand
- Published
- 1991
- Full Text
- View/download PDF
142. Empirical Process Methods in Probability in Banach Spaces
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
Pure mathematics ,Compact space ,Approximation property ,Banach space ,Econometrics ,Interpolation space ,Limit (mathematics) ,Random variable ,Empirical process ,Mathematics ,Central limit theorem - Abstract
The purpose of this chapter is to present applications of the random process techniques developed so far to infinite dimensional limit theorems, and in particular to the central limit theorem (CLT). More precisely, we will be interested for example in the CLT in the space C(T) of continuous functions on a compact metric space T. Since C(T) is not well behaved with respect to the type or cotype 2 properties, we will rather have to seek for nice classes of random variables in C(T) for which a central limit property can be established. This point of view leads to enlarge this framework and to investigate limit theorems for empirical measures or processes. Random geometric descriptions of the CLT may then be produced via this approach, as well as complete descriptions for nice classes of functions (indicator functions of some sets) on which the empirical processes are indexed. While these random geometric descriptions do not solve the central limit problem in infinite dimension (and are probably of little use in applications), however, they clearly describe the main difficulties inherent to the problem from the empirical point of view.
- Published
- 1991
- Full Text
- View/download PDF
143. Regularity of Gaussian and Stable Processes
- Author
-
Michel Talagrand and Michel Ledoux
- Subjects
symbols.namesake ,Stochastic process ,Bounded function ,Gaussian ,symbols ,Applied mathematics ,Almost surely ,Ultrametric space ,Gaussian process ,Gaussian random field ,Mathematics ,Probability measure - Abstract
In the preceding chapter, we presented some sufficient metric entropy and majorizing measure conditions for the sample boundedness and continuity of random processes satisfying incremental conditions. In particular, these results were applied to Gaussian random processes in Section 11.3. The main concern of this chapter is necessity. We will see indeed, as one of the main results, that the sufficient majorizing measure condition for a Gaussian process to be almost surely bounded or continuous is actually also necessary. This characterization thus provides a complete understanding of the regularity properties of Gaussian paths. The arguments of proof rely heavily on the basic ultrametric structure which lies behind a majorizing measure condition.
- Published
- 1991
- Full Text
- View/download PDF
144. Gaussian Random Variables
- Author
-
Michel Ledoux and Michel Talagrand
- Subjects
symbols.namesake ,Random field ,Random variate ,Computer science ,Multivariate random variable ,Sum of normally distributed random variables ,Calculus ,symbols ,Random element ,Gaussian process ,Algebra of random variables ,Gaussian random field - Abstract
With this chapter, we really enter into the subject of Probability in Banach spaces. The study of Gaussian random vectors and processes may indeed be considered as one of the fundamental topics of the theory since it inspires many other parts of the field both in the results themselves and in the techniques of investigation. Historically, the developments also followed this line of progress.
- Published
- 1991
- Full Text
- View/download PDF
145. A note on large deviations for wiener chaos
- Author
-
Michel Ledoux
- Subjects
CHAOS (operating system) ,Polynomial chaos ,Calculus ,Applied mathematics ,Large deviations theory ,Isoperimetric inequality ,Wiener integral ,Gaussian measure ,Mathematics - Published
- 1990
- Full Text
- View/download PDF
146. Séminaire De Probabilités XXXVI
- Author
-
Jacques Azéma, Michel Émery, Michel Ledoux, Marc Yor, Jacques Azéma, Michel Émery, Michel Ledoux, and Marc Yor
- Subjects
- Probabilities, Social sciences—Mathematics
- Published
- 2004
147. Séminaire De Probabilités XXXVIII
- Author
-
Michel Émery, Michel Ledoux, Marc Yor, Michel Émery, Michel Ledoux, and Marc Yor
- Subjects
- Probabilities
- Abstract
Besides a series of six articles on Lévy processes, Volume 38 of the Séminaire de Probabilités contains contributions whose topics range from analysis of semi-groups to free probability, via martingale theory, Wiener space and Brownian motion, Gaussian processes and matrices, diffusions and their applications to PDEs. As do all previous volumes of this series, it provides an overview on the current state of the art in the research on stochastic processes.
- Published
- 2004
148. Determination of proteins and sulfobetaine with the folin-phenol reagent
- Author
-
François Lamy and Michel Ledoux
- Subjects
Molybdenum ,Chromatography ,medicine.diagnostic_test ,Detergents ,Biophysics ,Proteins ,Fraction (chemistry) ,Cell Biology ,Tungsten Compounds ,Biochemistry ,Tungsten ,Betaine ,Absorbance ,chemistry.chemical_compound ,chemistry ,Spectrophotometry ,Reagent ,Zwitterion ,medicine ,Phenol ,Spectrophotometry, Ultraviolet ,Trichloroacetic acid ,Molecular Biology ,Quantitative analysis (chemistry) ,Serum Albumin - Abstract
This paper describes a method for the quantitative analysis of solutions containing a mixture of proteins and sulfobetaine. In a preliminary step the proteins, which interfere with the detergent assay, are separated by precipitation with trichloroacetic acid (8%). The insoluble fraction, dissolved in NaOH (1.0 N), and the soluble fraction, containing the detergent, are treated with the Folin-Ciocalteu phenol reagent, essentially following the method of O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951, J. Biol. Chem. 193, 265-275). The absorbance of the protein fraction is read, as usual at 750 nm, while that of the detergent solution is read at 342 nm. At this wavelength, sulfobetaine, treated with the Folin reagent, absorbs strongly, the absorbances being proportional to its concentration up to 1.5 mg/ml.
- Published
- 1986
- Full Text
- View/download PDF
149. Transform�es de Burkholder et sommabilit� de Martingales � deux param�tres
- Author
-
Michel Ledoux
- Subjects
General Mathematics ,Humanities ,Mathematics - Published
- 1982
- Full Text
- View/download PDF
150. The law of the iterated logarithm in uniformly convex Banach spaces
- Author
-
Michel Ledoux
- Subjects
Discrete mathematics ,Relatively compact subspace ,Approximation property ,Applied Mathematics ,General Mathematics ,Bounded function ,Banach space ,Law of the iterated logarithm ,Almost surely ,Random variable ,Mathematics ,Separable space - Abstract
We give necessary and sufficient conditions for a random variable X X with values in a uniformly convex Banach space B B to satisfy the law of the iterated logarithm. Precisely, we show that a B B -valued random variable X X satisfies the (compact) law of the iterated logarithm if and only if E { | | X | | 2 / L 2 | | X | | } > ∞ E\{ ||X|{|^2}/{L_2}||X||\} > \infty , the family { | x ∗ ( X ) | 2 ; x ∗ ∈ B ∗ , | | x ∗ | | = 1 } \{ |{x^{\ast }}(X){|^2};\,{x^{\ast }} \in {B^{\ast }},\,||{x^{\ast }}|| = 1\} is uniformly integrable and S n / a n → 0 {S_n}/{a_n} \to 0 in probability.
- Published
- 1986
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.