101. Native Protein Separation by Isoelectric Focusing and Blue Gel Electrophoresis-Coupled Two-Dimensional Microfluidic Chip Electrophoresis
- Author
-
Chenhua Pan, Ni Hou, Yulin Deng, Quan Zongliang, Lina Geng, Shiyong Yu, and Yu Chen
- Subjects
Free-flow electrophoresis ,Gel electrophoresis ,Chromatography ,Two-dimensional gel electrophoresis ,Chemistry ,Isoelectric focusing ,Organic Chemistry ,Clinical Biochemistry ,Gel electrophoresis of proteins ,Biochemistry ,Analytical Chemistry ,Electrophoresis ,chemistry.chemical_compound ,Protein structure ,Sodium dodecyl sulfate - Abstract
The use of microfluidic chip-based two-dimensional separation holds great promise in the proteomics field, given its portability, simplicity, speed, efficiency, and throughput. However, inclusion of sodium dodecyl sulfate, reported to be necessary for increasing protein-resolving capability, was also accompanied by the loss of both protein conformation and biological function. Here, we describe separation of native proteins by introducing blue native gel electrophoresis into isoelectric focusing and gel electrophoresis (IEF/CGE)-coupled protein two-dimensional microfluidic chip electrophoresis. After assessing the influence of various experimental conditions, the best separation ability and reproducibility of blue native IEF/CGE (IEF/BN-CGE) chip electrophoresis achieved until now were demonstrated no matter whether with a simple simulated mixture or with a complex mixture of total Escherichia coli proteins. Finally, instead of theoretical calculations, the image analysis technique was also used for the first time to quantitatively evaluate the actual peak capacities of chip electrophoresis. According to the number of features abstracted in the electrophoresis patterns, the superiority of the IEF/BN-CGE two-dimensional microfluidic chip electrophoresis was then exhibited quantitatively. The high native protein separation performance makes this established chip electrophoresis method possible for further application in widely needed drug screening, analysis of bio-molecular function, and assays of protein–protein interactions.
- Published
- 2014
- Full Text
- View/download PDF