101. Geoscientific Model Development A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes
- Author
-
Lauritzen, P. H., Ullrich, P. A., Jablonowski, C., Bosler, P. A., Calhoun, D., Conley, A. J., Enomoto, T., Dong, L., Dubey, S., Guba, O., Hansen, A. B., Kaas, E., Kent, J., Lamarque, J.-F., Prather, M. J., Reinert, D., Shashkin, V. V., Skamarock, W. C., Sørensen, B., Taylor, M. A., Tolstykh, M. A., National Center for Atmospheric Research [Boulder] (NCAR), University of California [Davis] (UC Davis), University of California (UC), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Boise State University, Boise, ID, United States, affiliation inconnue, University of Colorado [Boulder], Disaster Prevention Research Institute (DPRI), Kyoto University, Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics [Beijing] (IAP), Chinese Academy of Sciences [Beijing] (CAS)-Chinese Academy of Sciences [Beijing] (CAS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sandia National Laboratories [Albuquerque] (SNL), Sandia National Laboratories - Corporation, National Institute of Water and Atmospheric Research [Wellington] (NIWA), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Department of Earth System Science [Irvine] (ESS), University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Deutscher Wetterdienst [Offenbach] (DWD), Institute of Numerical Mathematics, RAS, Moscow, Russian Federation, Hydrometcentre of Russia, Moscow, Russian Federation, University of Calgary, University of California, Kyoto University [Kyoto], Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), University of California [Irvine] (UCI), and University of California-University of California
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; Recently, a standard test case suite for 2-D lin-ear transport on the sphere was proposed to assess im-portant aspects of accuracy in geophysical fluid dynam-ics with a "minimal" set of idealized model configura-tions/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude–longitude grids to more isotropic domain discretiza-tions such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single-and two-tracer configurations using con-ventional error norms as well as novel diagnostics designed for climate and climate–chemistry applications. In addition, algorithmic considerations that may be important for com-putational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of bench-mark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison.
- Published
- 2014
- Full Text
- View/download PDF