101. Microbial protein production from lactose-rich effluents through food-grade mixed cultures: Effect of carbon to nitrogen ratio and dilution rate.
- Author
-
Scotto di Uccio A, Matassa S, Cesaro A, Esposito G, and Papirio S
- Subjects
- Carbon analysis, Nitrogen analysis, Whey metabolism, Whey Proteins metabolism, Fermentation, Saccharomyces cerevisiae metabolism, Lactose metabolism, Cheese
- Abstract
Overabundant agro-industrial side streams such as lactose-rich effluents from dairy activities offer multiple valorisation opportunities. In the present study, a food-grade mixed culture of bacteria and yeasts was tested under different operational conditions for the treatment and the valorisation of cheese whey permeate (CWP), the residue of whey protein recovery, into microbial protein (MP). Under continuous aerobic fermentation settings, the carbon-to-nitrogen (C/N) ratio showed little to no influence on the system performances and MP quality as compared to dilution rates (D), leading to a final protein content as high as 76%. Under high D values, instead, while biomass productivity increased, N-efficiency and protein content decreased. Unlike the bacterial community, the yeast one proved to be highly stable and less influenced by the increase of D. A preliminary estimate indicated that 2-11% of the future MP-based food production could be satisfied by only valorising lactose-rich dairy residues such as CWP., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF