Väitekirja elektrooniline versioon ei sisalda publikatsioone, Kross-luminestsents ja tsooni-sisene luminestsents on tahkiste omakiirguste liigid, mis tekivad piisava energiaga footonite või osakeste voogudega ergastamisel. Neid kiirgusi iseloomustab ülilühike luminestsentsi kustumisaeg, mida on võimalik potentsiaalselt ära kasutada väga head ajalist lahutust vajavates rakendustes. Kahjuks on nende kiirguste saagis väga madal ning kross-luminestsentsi kiirgusribad paiknevad lühilainelises spektriosas, kus fotodetektorite tundlikkus on madal. Doktoritöö eesmärk oli kasutada tsoonistruktuuri modifitseerimise lähenemist nende puuduste korvamiseks. Tuginedes materjalide tsoonistruktuuri arvutustele valiti sobivad elemendid, mis koos K, Ba katioonide ja F aniooniga on võimelised moodustama laia keelutsooniga fluoriide. Täiendava elemendi (Ge, Si) lisamisel on võimalik sünteesida heksafluoriide (nt K2GeF6), mille tsoonistruktuuri täiendavad lisaks valentsitsoonile (F seisundid) alamtsoonid (Ge, Si seisundid), luues soodsad võimalused tsooni-sisene luminestsentsi saagise kasvuks. Seisundite vähenenud vahekaugus nihutab kross-luminestsentsi nähtava valguse spektriosa suunas. Sünteesitud heksafluoriidide tsoonistruktuuri, elektron ergastusi ja nende kiirguslikku lagunemist uuriti aeglahutusega luminestsentsspektroskoopia meetoditel nii Tartu Ülikooli füüsika instituudis kui ka sünkrotronkiirguse keskuses MAX IV (Lund, Rootsi). Loodi uus, 32 ps ajalise lahutusega katseseade spetsiaalselt ülikiire luminestsentsi uurimiseks, mille abil näidati, et ülikiirete omakiirguste kustumisaeg uuritud heksafluoriidides jääb alla 500 ps. Kiirguste saagis oli rakendustes kasutamiseks liiga madal, kuid näidati nende esinemist laias spektriosas vaakum-ultravioletist nähtava valguseni. Doktoritöö tulemusena näidati, et tsoonistruktuuri modifitseerimise lähenemist kasutades on võimalik materjalide luminestsentsiomadusi mõjutada rakendamiseks vajalikus suunas., Cross-luminescence and intra-band luminescence are intrinsic emissions in solids excited by photons or particles with sufficient energy. The emissions have very short luminescence decay times and can potentially be used in applications requiring high time resolution. Unfortunately, light yield of the emissions is very low, and cross-luminescence emission bands are located in the short wavelength spectral region, where sensitivity of photodetectors is low. The aim of this doctoral work was to apply band structure engineering approach to overcome these disadvantages. Based on electronic band structure calculations, suitable elements able to form wide band gap ternary fluorides together with K, Ba cations and F anion were selected. Hexafluorides (e.g. K2GeF6) with complex valence band structure formed by F and additional Ge or Si states were synthesised. Valence band in these compounds is split into multiple sub-bands, favouring increased light yield of ultrafast emissions. Reduced energy gap between the valence band and outermost core level allows cross-luminescence emissions to shift towards the visible spectral range. The band structure of synthesized hexafluorides as well as electronic excitations and their radiative recombinations were studied using time-resolved luminescence spectroscopy methods at the Institute of Physics of the University of Tartu and at the MAX IV synchrotron radiation facility (Lund, Sweden). A new experimental setup with 32 ps time resolution was developed for studies of ultrafast luminescence. The experimental results revealed ultrafast emissions in the studied hexafluorides with less than 500 ps decay times. The light yield of ultrafast emissions was too low for use in applications, but they were observed in a broad spectral range from vacuum-ultraviolet to visible. As a result of this work, it was demonstrated that applying the band structure engineering approach, it is possible to achieve luminescence properties desired in materials., https://www.ester.ee/record=b5508902