101. Coexistence of Two Types of Spin Splitting Originating from Different Symmetries.
- Author
-
Koichiro Yaji, Anton Visikovskiy, Takushi Iimori, Kenta Kuroda, Singo Hayashi, Takashi Kajiwara, Satoru Tanaka, Fumio Komori, and Shik Shin
- Subjects
- *
PHOTOELECTRON spectroscopy , *DENSITY functionals , *CRYSTAL symmetry , *SYMMETRY , *SPIN-orbit interactions , *NUCLEAR shapes , *CRYSTAL structure - Abstract
The symmetry of a surface or interface plays an important role in determining the spin splitting and texture of a two-dimensional band. Spin-polarized bands of a triangular lattice atomic layer (TLAL) consisting of Sn on a SiC(0001) substrate is investigated by spin- and angle-resolved photoelectron spectroscopy. Surprisingly, both Zeeman- and Rashba-type spin-split bands, without and with spin degeneracy, respectively, coexist at a K point of the Sn TLAL. The K point has a threefold symmetry without inversion symmetry according to the crystal structure including the SiC periodicity, meaning that the Zeeman-type is consistent with the symmetry of the lattice while the Rashba-type is inconsistent. Our density functional calculations reveal that the charge density distribution of the Rashba-type (Zeeman-type) band shows (no) inversion symmetry at the K point. Therefore, the symmetry of the charge density distribution agrees with both types of the spin splitting. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF