Background: Despite advances in perioperative care, elective major vascular surgical procedures still carry a significant risk of morbidity and mortality. Remote ischaemic preconditioning (RIPC) is the temporary blocking of blood flow to vascular beds remote from those targeted by surgery. It has the potential to provide local tissue protection from further prolonged periods of ischaemia. However, the efficacy and safety of RIPC in people undergoing major vascular surgery remain unknown. This is an update of a review published in 2011. OBJECTIVES: To assess the benefits and harms of RIPC versus no RIPC in people undergoing elective major vascular and endovascular surgery., Search Methods: The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov to 1 April 2022., Selection Criteria: We included all randomised controlled trials that evaluated the role of RIPC in reducing perioperative mortality and morbidities in people undergoing elective major vascular or endovascular surgery., Data Collection and Analysis: We collected data on the characteristics of the trial, methodological quality, and the remote ischaemic preconditioning stimulus used. Our primary outcome was perioperative mortality, and secondary outcomes included myocardial infarction, renal impairment, stroke, hospital stay, limb loss, and operating time or total anaesthetic time. We analysed the data using random-effects models. For each outcome, we calculated the risk ratio (RR) or mean difference (MD) with a 95% confidence interval (CI) based on an intention-to-treat analysis. In addition, we used GRADE to assess the certainty of the evidence for each outcome., Main Results: We included 14 trials which randomised a total of 1295 participants (age range: 64.5 to 76 years; 84% male; study periods ranged from 2003 to 2019). In general, the included studies were at low to unclear risk of bias for most risk of bias domains. The certainty of evidence of main outcomes was moderate due to imprecision of results, moderate heterogeneity, or possible publication bias. We found that RIPC made no clear difference in perioperative mortality compared with no RIPC (RR 1.41, 95% CI 0.59 to 3.40; I 2 = 0%; 10 studies, 965 participants; moderate-certainty evidence). Similarly, we found no clear difference between the two groups for myocardial infarction (RR 0.82, 95% CI 0.49 to 1.40; I 2 = 7%; 11 studies, 1001 participants; moderate-certainty evidence), renal impairment (RR 1.07, 95% CI 0.62 to 1.86; I 2 = 40%; 12 studies, 1054 participants; moderate-certainty evidence), stroke (RR 0.33, 95% CI 0.04 to 3.15; I 2 = 0%; 4 studies, 392 participants; moderate-certainty evidence), limb loss (RR 0.74, 95% CI 0.05 to 10.61; I 2 = 32%; 3 studies, 322 participants; low-certainty evidence), hospital stay (MD -0.94 day, 95% CI -1.95 to 0.07; I 2 = 17%; 7 studies, 569 participants; moderate-certainty evidence), and operating time or total anaesthetic time (MD 5.76 minutes, 95% CI -3.25 to 14.76; I 2 = 44%; 10 studies, 803 participants; moderate-certainty evidence). AUTHORS' CONCLUSIONS: Overall, compared with no RIPC, RIPC probably leads to little or no difference in perioperative mortality, myocardial infarction, renal impairment, stroke, hospital stay, and operating time, and may lead to little or no difference in limb loss in people undergoing elective major vascular and endovascular surgery. Adequately powered and designed randomised studies are needed, focusing in particular on the clinical endpoints and patient-centred outcomes., (Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)