101. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model.
- Author
-
Auffenberg E, Hedrich UB, Barbieri R, Miely D, Groschup B, Wuttke TV, Vogel N, Lührs P, Zanardi I, Bertelli S, Spielmann N, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Pusch M, Dichgans M, Lerche H, Gavazzo P, Plesnila N, and Freilinger T
- Subjects
- Animals, Interneurons pathology, Mice, Mice, Transgenic, Migraine Disorders genetics, Migraine Disorders pathology, NAV1.1 Voltage-Gated Sodium Channel genetics, Cortical Spreading Depression, Heterozygote, Interneurons metabolism, Migraine Disorders metabolism, Mutation, NAV1.1 Voltage-Gated Sodium Channel metabolism
- Abstract
Cortical spreading depression (CSD), a wave of depolarization followed by depression of cortical activity, is a pathophysiological process implicated in migraine with aura and various other brain pathologies, such as ischemic stroke and traumatic brain injury. To gain insight into the pathophysiology of CSD, we generated a mouse model for a severe monogenic subtype of migraine with aura, familial hemiplegic migraine type 3 (FHM3). FHM3 is caused by mutations in SCN1A, encoding the voltage-gated Na+ channel NaV1.1 predominantly expressed in inhibitory interneurons. Homozygous Scn1aL1649Q knock-in mice died prematurely, whereas heterozygous mice had a normal lifespan. Heterozygous Scn1aL1649Q knock-in mice compared with WT mice displayed a significantly enhanced susceptibility to CSD. We found L1649Q to cause a gain-of-function effect with an impaired Na+-channel inactivation and increased ramp Na+ currents leading to hyperactivity of fast-spiking inhibitory interneurons. Brain slice recordings using K+-sensitive electrodes revealed an increase in extracellular K+ in the early phase of CSD in heterozygous mice, likely representing the mechanistic link between interneuron hyperactivity and CSD initiation. The neuronal phenotype and premature death of homozygous Scn1aL1649Q knock-in mice was partially rescued by GS967, a blocker of persistent Na+ currents. Collectively, our findings identify interneuron hyperactivity as a mechanism to trigger CSD.
- Published
- 2021
- Full Text
- View/download PDF