101. Using time-series chest radiographs and laboratory data by machine learning for identifying pulmonary infection and colonization of Acinetobacter baumannii
- Author
-
Zhaodong Zeng, Jiefang Wu, Genggeng Qin, Dong Yu, Zilong He, Weixiong Zeng, Hao Zhou, Jiongbin Lin, Laiyu Liu, Chunxia Qi, and Weiguo Chen
- Subjects
Acinetobacter baumannii ,Machine learning ,Time-series chest radiographs and laboratory data ,Infection and colonization ,Diseases of the respiratory system ,RC705-779 - Abstract
Abstract Background Accurately distinguishing between pulmonary infection and colonization in patients with Acinetobacter baumannii is of utmost importance to optimize treatment and prevent antibiotic abuse or inadequate therapy. An efficient automated sorting tool could prompt individualized interventions and enhance overall patient outcomes. This study aims to develop a robust machine learning classification model using a combination of time-series chest radiographs and laboratory data to accurately classify pulmonary status caused by Acinetobacter baumannii. Methods We proposed nested logistic regression models based on different time-series data to automatically classify the pulmonary status of patients with Acinetobacter baumannii. Advanced features were extracted from the time-series data of hospitalized patients, encompassing dynamic pneumonia indicators observed on chest radiographs and laboratory indicator values recorded at three specific time points. Results Data of 152 patients with Acinetobacter baumannii cultured from sputum or alveolar lavage fluid were retrospectively analyzed. Our model with multiple time-series data demonstrated a higher performance of AUC (0.850, with a 95% confidence interval of [0.638–0.873]), an accuracy of 0.761, a sensitivity of 0.833. The model, which only incorporated a single time point feature, achieved an AUC of 0.741. The influential model variables included difference in the chest radiograph pneumonia score. Conclusion Dynamic assessment of time-series chest radiographs and laboratory data using machine learning allowed for accurate classification of colonization and infection with Acinetobacter baumannii. This demonstrates the potential to help clinicians provide individualized treatment through early detection.
- Published
- 2024
- Full Text
- View/download PDF