Današnje inženirstvo napreduje, proti novim tehnologijam materialov, kar odpre nove konstrukcijske možnosti zmanjševanja presekov, vztrajnostnih mas in dimenzij izdelkov. Vse izrazitejše se kažejo potrebe po uporabi, naprednih materialov z specifičnimi lastnostmi, kot so visoka trdnost in trdota, izboljšana žilavost, odpornost na ciklično utrujanje, povečana električna in toplotna prevodnost, ter toplotna obstojnost. Proizvodnja takšnih materialov, zahteva nove proizvodnje tehnologije, in uporabo vseh dosedanjih znanj iz področja materialov. Lastnosti materiala, lahko izboljšamo na različne načine, osredotočili se bomo predvsem na zmanjševanje velikosti kristalnih zrn in vnašanje drobnih delcev v mikrostrukturo. Z zmanjšanjem velikosti kristalnih zrn, dosežemo večje napetosti tečenja, v skladu z Hall-Petchovo odvisnostjo. Ko se zmanjša velikosti zrn pod 1µm, imamo opravka z materiali, ki imajo, nove edinstvene kombinacije lastnosti. Študij literature je pokazal, da je mogoče doseči submikronsko, in celo nanokristalno mikrostrukturo, z aplikacijo velikih plastičnih deformacij. To dosežemo z izpostavljanjem materiala velikim tlakom, torziji oz. enostavnemu strigu. Eden najbolj obetavnih postopkov z tega področja, je tako imenovan ECAP postopek, pri katerem je prisotna možnost uporabe v industrijski praksi, ki bo preučena v tej publikaciji. The development of engineering advances towards new procedures in materials science. This opens a new variety of construction options, with the possibilities of reduced cross-sections, as well as smaller mass and dimensions of the finished product. The requirement for this are new engineering materials, with specific properties of high strength and hardness, improved ductility, high cyclic fatigue resistance, increased electrical and thermal conductivity and improved heat resistance. The production of materials with such characteristics requires new manufacturing methods, as well as the usage of the knowledge in materials science up to date. There are several means by which, the properties of materials may be enhanced, in this paper we will focus mainly on grain size refinement and the implication of small particles into the micro-structure. The yield strength is inversely proportional to the grain size of the material which is described by the Hall-Petch relation. When the grain size moves close to its optimum value, the material shows, a new and unique set of properties. Studies of publications on this subject have shown, that it is possible to attain a sub-micron of even nanoscale grain size, by exposing the material to severe plastic deformation. That is attained by imposing high, pressure, torque or shear strains upon the workpiece. One of the most promising among the many SPD processes is ECAP (equal channel angular pressing), which has the possibility of industrial application, which will be reviewed at the end of this document.