101. Photoinduced Delamination of Metal-Organic Framework Thin Films by Spatioselective Generation of Reactive Oxygen Species.
- Author
-
Liu X, Mazel A, Marschner S, Fu Z, Muth M, Kirschhöfer F, Brenner-Weiss G, Bräse S, Diring S, Odobel F, Haldar R, and Wöll C
- Abstract
Metal-organic frameworks (MOFs) built from different building units offer functionalities going far beyond gas storage and separation. In connection with advanced applications, e.g., in optoelectronics, hierarchical MOF-on-MOF structures fabricated using sophisticated methodologies have recently become particularly attractive. Here, we demonstrate that the structural complexity of MOF-based architectures can be further increased by employing highly spatioselective photochemistry. Using a layer-by-layer, quasi-epitaxial synthesis method, we realized a photoactive MOF-on-MOF hetero-bilayer consisting of a porphyrinic bottom layer and a tetraphenylethylene (TPE)-based top layer. Illumination of the monolithic thin film with visible light in the presence of oxygen gas results in the generation of reactive oxygen species (
1 O2 ) in the porphyrinic bottom layer, which lead to a photocleavage of the TPE units at the internal interface. We demonstrate that this spatioselective photochemistry can be utilized to delaminate the top layers, yielding two-dimensional (2D) MOF sheets with well-defined thickness. Experiments using atomic force microscopy (AFM) demonstrate that these platelets can be transferred onto other substrates, thus opening up the possibility of fabricating planar MOF structures using photolithography.- Published
- 2021
- Full Text
- View/download PDF