293 results on '"Gerland S"'
Search Results
102. Comparison of density-depth variation in three Antarctic ice cores with different accumulation history
- Author
-
Gerland, S., Karlöff, L., Wilhelms, Frank, Oerter, Hans, Winther, Jan-Gunnar, Gerland, S., Karlöff, L., Wilhelms, Frank, Oerter, Hans, and Winther, Jan-Gunnar
- Published
- 1999
103. Multidisciplinary ice tank study shedding new light on sea ice growth processes
- Author
-
Haas, Christian, Cottier, F., Smedsrud, L. H., Thomas, D. N., Buschmann, U., Dethleff, D., Gerland, S., Giannelli, V., Hölemann, Jens, Tison, J.-L., Wadhams, P., Haas, Christian, Cottier, F., Smedsrud, L. H., Thomas, D. N., Buschmann, U., Dethleff, D., Gerland, S., Giannelli, V., Hölemann, Jens, Tison, J.-L., and Wadhams, P.
- Published
- 1999
104. Continuous density log of a 181 metre long ice core from the summit of Berkner Island, Antarctica
- Author
-
Gerland, S., Oerter, Hans, Kipfstuhl, J., Wilhelms, Frank, Miller, Heinrich, Gerland, S., Oerter, Hans, Kipfstuhl, J., Wilhelms, Frank, and Miller, Heinrich
- Published
- 1999
105. Multidisciplinary ice tank study shedding new light on sea ice growth processes
- Author
-
Haas, C., Cottier, F., Smedsrud, L.H., Thomas, D. R., Buschmann, U., Dethleff, D., Gerland, S., Giannelli, V., Hoelemann, J., Tison, Jean-Louis, Wadhams, P., Haas, C., Cottier, F., Smedsrud, L.H., Thomas, D. R., Buschmann, U., Dethleff, D., Gerland, S., Giannelli, V., Hoelemann, J., Tison, Jean-Louis, and Wadhams, P.
- Abstract
info:eu-repo/semantics/published
- Published
- 1999
106. Modelling a GPR record by using ice core data to produce a synthetic radargram
- Author
-
Miners, W.D., Blindow, N., Gerland, S., Miners, W.D., Blindow, N., and Gerland, S.
- Published
- 1998
107. Forward modeling of the internal layers in radio echo sounding using electrical and density measurements from ice cores
- Author
-
Miners, W. D., Hildebrand, A., Gerland, S., Blindow, N., Steinhage, Daniel, Wolff, E. W., Miners, W. D., Hildebrand, A., Gerland, S., Blindow, N., Steinhage, Daniel, and Wolff, E. W.
- Abstract
The measured density and conductivity of a 181 m ice core are used to calculate a profile of complex reflection coefficients. It is confirmed that the amplitude reflection coefficients due to the conductivity variations are negligible in comparison to the amplitude reflection coefficients due to the density variations. Using the magnitudes of these reflection coefficients we obtain a profile of the expected power being returned to the surface. The modeled power return is compared with the results of a short pulse electromagnetic reflection survey near the drill site. We also convolve the profile of complex reflection coefficients with a depth invariant input wavelet to produce a synthetic radargram for the top part of the ice sheet. The phase change given to wavelets reflecting from the conductivity variations has a negligible effect on the synthetic radargram. Using this simple model we are unable to match the positions of the internal layers in the synthetic radargram with those in the reflection survey.
- Published
- 1997
108. Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device
- Author
-
Haas, Christian, Gerland, S., Eicken, H., Miller, Heinrich, Haas, Christian, Gerland, S., Eicken, H., and Miller, Heinrich
- Published
- 1997
109. Physical properties of a porcellanite layer (Southwest Indian Ridge) constrained by geophysical logging
- Author
-
Gerland, S., Kuhn, Gerhard, Bohrmann, G., Gerland, S., Kuhn, Gerhard, and Bohrmann, G.
- Abstract
A distinct porcellanite layer from the Southwest Indian Ridge intercalated in Pleistocene diatom ooze was studied using nondestructive physical property measurements and sedimentological data. This bed was sampled by two piston cores at a water depth of 2615 m. The 3-5 cm thick porcellanite layer appears in the cores at a depth of 6.03 m (Core PS2089-2) and 7.73 m (Core PS2089-1) below the seafloor. Due to its characteristic physical properties the porcellanite bed can be detected with core measurements, and ist distribution and lateral extent mapped with echosounding. The physical index properties, wet bulk density and electrical resistivity, increase significantly across this bed. Magnetic susceptibility is used to compare the lithological units of both cores and to distinguish whether resistivity anomalies are caused by a higher amount of terrigenous components or by the presence of porcellanite. The porcellanite has the special characteristic to affect a positive anomaly ir, resistivity but not in susceptibility, Most marine sediments, in contrast, show a positive correlation of magnetic susceptibility versus electrical resistivity; therefore a combination of electrical resistivity and magnetic susceptibility logs yields a definite detection of the porcellanite bed. Images from the X-ray CT survey indicate that the porcellanite is lithified and brittle and fragmented when the piston corer penetrated the bed.
- Published
- 1997
110. Indentation testing on ice from the Filchner Ronne Ice shelf area, Antarctica: preliminary results
- Author
-
Gerland, S., Sammonds, P., Oerter, Hans, Gerland, S., Sammonds, P., and Oerter, Hans
- Published
- 1997
111. Radionuclides in the Kongsfjorden area, Svalbard
- Author
-
Gerland, S., primary, Lind, B., additional, Dowdall, M., additional, Kolstad, A. K., additional, and Brungot, A. L., additional
- Published
- 2002
- Full Text
- View/download PDF
112. Continous Density Measurementson the Ice Core B25 from Berkner Island, Antarctica
- Author
-
Oerter, Hans, Gerland, S., Kipfstuhl, J., Wilhelms, Frank, Frenzel, Andreas, Oerter, Hans, Gerland, S., Kipfstuhl, J., Wilhelms, Frank, and Frenzel, Andreas
- Published
- 1996
113. Kontinuierliche Dichtemessungen am Eiskern B25, Berkner Island, Antarktis
- Author
-
Gerland, S., Oerter, Hans, Kipfstuhl, J., Frenzel, Andreas, Wilhelms, Frank, Gerland, S., Oerter, Hans, Kipfstuhl, J., Frenzel, Andreas, and Wilhelms, Frank
- Published
- 1996
114. Nondestructive density determination on marine sediment cores from gamma-ray attenuation measurements
- Author
-
Gerland, S., Villinger, H., Gerland, S., and Villinger, H.
- Abstract
We describe an improved nondestructive technique for density measurement based on gamma-ray absorption that permits construction of high-resolution density profiles of marine sediment cores. The system is capable of resolving vertical density variations with a spatial resolution of 4 mm and absolute accuracy of +/-1%. Comparison with conventional density determination on samples confirms the absolute accuracy. In addition to standard vertical profiling, a core rotation option is included to measure density as a function of rotation angle. This allows the quantification of the variability of density within a layer and detection of inhomogenities like ice-rafted debris or biogenic structures.
- Published
- 1995
115. Elektromagnetische Messungen zur Bestimmung der Dicke von Meereis
- Author
-
Gerland, S., Haas, Christian, Eicken, H., Miller, Heinrich, Gerland, S., Haas, Christian, Eicken, H., and Miller, Heinrich
- Published
- 1995
116. Combined observations of Arctic sea ice with near‐coincident colocated X‐band, C‐band, and L‐band SARsatellite remote sensing and helicopter‐borne measurements
- Author
-
Johansson, A. M., King, J. A., Doulgeris, A. P., Gerland, S., Singha, S., Spreen, G., and Busche, T.
- Abstract
In this study, we compare colocated near‐coincident X‐, C‐, and L‐band fully polarimetry SAR satellite images with helicopter‐borne ice thickness measurements acquired during the Norwegian Young sea ICE 2015 (N‐ICE2015) expedition in the region of the Arctic Ocean north of Svalbard in April 2015. The air‐borne surveys provide near‐coincident snow plus ice thickness, surface roughness data, and photographs. This unique data set allows us to investigate how the different frequencies can complement one another for sea ice studies, but also to raise awareness of limitations. X‐band and L‐band satellite scenes were shown to be a useful complement to the standard SAR frequency for sea ice monitoring (C‐band) for lead ice and newly formed sea ice identification. This may be in part be due to the frequency but also the high spatial resolution of these sensors. We found a relatively low correlation between snow plus ice thickness and surface roughness. Therefore, in our dataset ice thickness cannot directly be observed by SAR which has important implications for operational ice charting based on automatic segmentation. Three different synthetic aperture radar (SAR) frequency bands are compared regarding their response to different sea‐ice characteristicsNewly formed sea ice generate an above average response in L‐band and below average response in C‐band and X‐band copolarization ratioSurface roughness and snow pack structure can in some cases be a stronger influence on sea ice classification than sea‐ice thickness itself
- Published
- 2017
- Full Text
- View/download PDF
117. Attenuation of solar radiation in Arctic snow: field observations and modelling
- Author
-
Gerland, S., primary, Liston, G. E., additional, winther, J.-G., additional, Ørbæk, J. B., additional, and Ivanov, B.V., additional
- Published
- 2000
- Full Text
- View/download PDF
118. Variability in categories of Arctic sea ice in Fram Strait.
- Author
-
Hansen, E., Ekeberg, O.-C., Gerland, S., Pavlova, O., Spreen, G., and Tschudi, M.
- Published
- 2014
- Full Text
- View/download PDF
119. Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: some implications for optical satellite remote sensing studies
- Author
-
Winther, J-G., primary, Gerland, S., additional, Ørbæk, J. B., additional, Ivanov, B., additional, Blanco, A., additional, and Boike, J., additional
- Published
- 1999
- Full Text
- View/download PDF
120. Zerstörungsfreie hochauflösende Dichteuntersuchungen mariner Sedimente = Non-destructive high resolution density measurements on marine sediments
- Author
-
Gerland, S. and Gerland, S.
- Published
- 1993
121. Zerstörungsfreie hochauflösende Dichteuntersuchungen mariner Sedimente
- Author
-
Gerland, S. and Gerland, S.
- Published
- 1993
122. Zerstörungsfreie Widerstandsmessungen im Labor an marinen Sedimenten Protokoll
- Author
-
Gerland, S. and Gerland, S.
- Published
- 1993
123. Non-destructive porosity determinations of Antarctic marine sediments derived from resistivity measurements with an inductive method
- Author
-
Gerland, S., Richter, M., Villinger, H., Kuhn, Gerhard, Gerland, S., Richter, M., Villinger, H., and Kuhn, Gerhard
- Abstract
The fractional porosity of marine sediments is one of the fundamental index properties of rocks. For the determination of porosity a nondestructive, inductive method was used on unsplit sediment cores. The results were compared with galvanically measured resistivities using a miniature Wenner array on split cores. The measurements agree well except for cores with high clay content where measurement frequency related effects cause a resistivity difference of about 10%. Porosities were derived from resistivities using a published resistivity-porosity relationship by Boyce (1968) and compared with sample porosities. A comparison of both data sets shows good agreement.
- Published
- 1993
124. Density log of a 181 m long ice core from Berkner Island, Antarctica
- Author
-
Gerland, S., primary, Oerter, H., additional, Kipfstuhl, J., additional, Wilhelms, F., additional, Miller, H., additional, and Miners, W. D., additional
- Published
- 1999
- Full Text
- View/download PDF
125. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review.
- Author
-
Vihma, T., Pirazzini, R., Renfrew, I. A., Sedlar, J., Tjernström, M., Nygård, T., Fer, I., Lüpkes, C., Notz, D., Weiss, J., Marsan, D., Cheng, B., Birnbaum, G., Gerland, S., Chechin, D., and Gascard, J. C.
- Abstract
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice--ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice--ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new yearround field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
126. Non-destructive porosity determinations of antarctic marine sediments derived from resistivity measurements with an inductive method
- Author
-
Gerland, S., primary, Richter, M., additional, Villinger, H., additional, and Kuhn, G., additional
- Published
- 1993
- Full Text
- View/download PDF
127. Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign.
- Author
-
Lyapustin, A., Gatebe, C. K., Kahn, R., Brandt, R., Redemann, J., Russell, P., King, M. D., Pedersen, C. A., Gerland, S., Poudyal, R., Marshak, A., Wang, Y., Schaaf, C., Hall, D., and Kokhanovsky, A.
- Subjects
CHEMICAL processes ,ATMOSPHERIC aerosols ,REFLECTANCE ,RADIATIVE transfer ,ALBEDO ,ATMOSPHERIC chemistry - Abstract
The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1° angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles φ < 40°), the best fit MRPV and RTLS models fit snow BRF to within ±0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about ±0.05 with a possible bias of ±0.03 in the spectral range 0.4-2.2 μm. This high accuracy holds at view zenith angles below 55-60° covering the practically important range for remote sensing applications, and includes both glint and backscattering directions. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
128. Brief Communication: Ikaite (CaCO3.6H2O) discovered in Arctic sea ice.
- Author
-
Dieckmann, G. S., Nehrke, G., Uhlig, C., J. Göttlicher, Gerland, S., Granskog, M. A., and Thomas, D. N.
- Subjects
CALCIUM carbonate ,CARBON cycle ,SPATIAL ability ,CARBON dioxide & the environment - Abstract
The article presents the study which investigates the calcium carbonate crystals as ikaite in sea ice from the Arctic Ocean. It mentions that the discovery suggest that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the ocean. Based from the observation, the researcher come up with a conclusion that it is a important to quantify the impact on the sea ice driven by carbon cycle.
- Published
- 2010
- Full Text
- View/download PDF
129. Analysis of snow bidirectional reflectance from ARCTAS spring-2008 campaign.
- Author
-
Lyapustin, A., Gatebe, C. K., Kahn, R., Brandt, R., Redemann, J., Russell, P., King, M. D., Pedersen, C. A., Gerland, S., Poudyal, R., Marshak, A., Wang, Y., Schaaf, C., Hall, D., and Kokhanovsky, A.
- Abstract
The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of the major intensive field campaigns of the International Polar Year, aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. Part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1° angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles φ<40°), the best fit MRPV and RTLS models fit snow BRF to within ±0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with the experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about ±0.05 with a possible bias of ±0.03 in the spectral range 0.4-2.2 μm. This high accuracy holds at view zenith angles below 55-60° covering the practically important range for remote sensing applications, and includes both glint and backscattering directions. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
130. Gefahren beim Carvingskifahren.
- Author
-
W�lfel, R., K�hne, G., Schaller, C., Gerland, S., and Walter, M.
- Published
- 2003
- Full Text
- View/download PDF
131. Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard
- Author
-
Dowdall, M., Gerland, S., and Lind, B.
- Subjects
- *
RADIOISOTOPES - Abstract
This paper presents results obtained from a radiometric survey, conducted by the Norwegian Radiation Protection Authority, into the levels of gamma-emitting radionuclides, both anthropogenic and natural, in the terrestrial environment of Kongsfjorden, which lies on the North-Western Coast of Spitsbergen in the Arctic archipelago of Svalbard (79°N, 12°E). Samples of terrestrial matrices were taken during field campaigns conducted between 2000 and 2002 and analysed for a range of gamma-emitting radionuclides. The objectives of this study included an assessment of the levels of gamma-emitting radionuclides in the terrestrial environment of the region, identification of processes and activities that influence the accumulation and redistribution of such nuclides within the region and elucidation of the behaviour of such radionuclides within a high arctic environment. Results indicate a quite homogenous spatial distribution of such radionuclides within the study area and highlight the relatively low levels of contamination by the anthropogenic radionuclide, 137Cs, on Svalbard. Average values and ranges of the radionuclides activities in surface soils (0–3 cm) were: 238U 42 Bq/kg (17–134), 226Ra 43 Bq/kg (12–137), 232Th 21 Bq/kg (4–52), 40K 283 Bq/kg (31–564), 137Cs 35 Bq/kg (1–146). Average levels of these nuclides in avian faecal materials were 238U 63 Bq/kg, 226Ra 54 Bq/kg, 232Th 19 Bq/kg, 40K 365 Bq/kg, 137Cs 78 Bq/kg. Enrichment of radionuclides is apparent in soils taken from locations close to bird colonies in the locale, maximum levels of the radionuclides being found in samples associated with such colonies. The results indicate that this is due to concentration of such radionuclides within the faecal material of the birds and subsequent enrichment of the nearby soils either via direct incorporation of the faeces into the soil or by leaching processes. The results indicate that this process may result in contamination of non-related species, such as Svalbard reindeer (Rangifer tarandus playrhynchus), via pathways other than the traditionally accepted route of atmospheric deposition–vegetation–reindeer. [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
132. f. Sea ice cover.
- Author
-
Perovich, D., Gerland, S., Hendricks, S., Meier, W., Nicolaus, M., Richter-Menge, J., and Tschudi, M.
- Subjects
- *
SEA ice , *OCEANOGRAPHY , *ARCTIC climate , *SNOW , *CLIMATOLOGY - Abstract
The article looks at the annual extent of the sea ice cover in the Arctic in 2013. Topics discussed include the use of satellite-based passive microwave instruments to determine the sea ice extent, the age and thickness of the Arctic sea ice, and the changes in sea ice extent during the months of March and September. Also mentioned are the estimates produced by the National Snow and Ice Data Center (NSIDC).
- Published
- 2014
133. Modeling the Microwave Emission of Snow on Arctic Sea Ice for Estimating the Uncertainty of Satellite Retrievals
- Author
-
Rostosky, P., Spreen, G., Gerland, S., Huntemann, M., and Mech, M.
- Abstract
Within a rapidly changing Arctic climate system, snow on sea ice is an important climate parameter. A common method to derive snow depth on an Arctic‐wide scale is based on passive microwave satellite observations. However, the uncertainties of this method are not well constrained. In this study, we estimate the influence of geophysical parameters, including ice, snow, and atmospheric properties on passive microwave snow depth retrievals using a Monte Carlo uncertainty estimation. The results are based on model simulations from the Microwave Emission Model for Layered Snowpacks, the SNOWPACK model, and from the Passive and Active Microwave TRAnsfer model. All simulations are based on in situ observations obtained during the N‐ICE2015 campaign. The average uncertainty in potential snow depth retrievals is between 11% and 19%, depending on the microwave frequencies used and increases with increasing snow depth. For lower‐frequency retrievals (including 6.9 GHz), unknown snow properties are the strongest source of uncertainty while for higher‐frequency retrievals (including 36.5 GHz), the contribution of ice, snow properties, and clouds is equally strong. The uncertainty of snow depth retrievals from satellite microwave radiometers is estimated using field measurements and model simulationsSnow properties have the strongest contribution to the uncertainty of snow depth retrievals compared to the influence of atmosphere and iceThe snow depth retrieval based on 19 and 7 GHz has a lower uncertainty compared to the 37 and 19 GHz one
- Published
- 2020
- Full Text
- View/download PDF
134. State of the Climate in 2012 INTRODUCTION
- Author
-
Achberger, Christine, Ackerman, Stephen A., Albanil, Adelina, Alexander, P., Alfaro, Eric J., Allan, Rob, Alves, Lincoln M., Amador, Jorge A., Ambenje, Peter, Andrianjafinirina, Solonomenjanahary, Antonov, John, Aravequia, Jose A., Arendt, A., Arevalo, Juan, Arndt, Derek S., Ashik, I., Atheru, Zachary, Banzon, Viva, Baringer, Molly O., Barreira, Sandra, Barriopedro, David E., Beard, Grant, Becker, Andreas, Behrenfeld, Michael J., Bell, Gerald D., Benedetti, Angela, Bernhard, Germar, Berrisford, Paul, Berry, David I., Bhatt, U., Bidegain, Mario, Bindoff, Nathan, Bissolli, Peter, Blake, Eric S., Blunden, Jessica, Booneeady, Raj, Bosilovich, Michael, Box, J. E., Boyer, Tim, Braathen, Geir O., Bromwich, David H., Brown, R., Brown, L., Bruhwiler, Lori, Bulygina, Olga N., Burgess, D., Burrows, John, Calderon, Blanca, Camargo, Suzana J., Campbell, Jayaka, Cao, Y., Cappelen, J., Carrasco, Gualberto, Chambers, Don P., Chang A, L., Chappell, Petra, Chehade, Wissam, Cheliah, Muthuvel, Christiansen, Hanne H., Christy, John R., Ciais, Phillipe, Coelho, Caio A. S., Cogley, J. G., Colwell, Steve, Cross, J. N., Crouch, Jake, Cunningham, Stuart A., Dacic, Milan, Jeu, Richard A. M., Dekaa, Francis S., Demircan, Mesut, Derksen, C., Diamond, Howard J., Dlugokencky, Ed J., Dohan, Kathleen, Dolman, A. Johannes, Domingues, Catia M., Dong Shenfu, Dorigo, Wouter A., Drozdov, D. S., Duguay, Claude R., Dunn, Robert J. H., Duran-Quesada, Ana M., Dutton, Geoff S., Ehmann, Christian, Elkins, James W., Euscategui, Christian, Famiglietti, James S., Fang Fan, Fauchereau, Nicolas, Feely, Richard A., Fekete, Balazs M., Fenimore, Chris, Fioletov, Vitali E., Fogarty, Chris T., Fogt, Ryan L., Folland, Chris K., Foster, Michael J., Frajka-Williams, Eleanor, Franz, Bryan A., Frith, Stacey H., Frolov, I., Ganter, Catherine, Garzoli, Silvia, Geai, M. -L, Gerland, S., Gitau, Wilson, Gleason, Karin L., Gobron, Nadine, Goldenberg, Stanley B., Goni, Gustavo, Good, Simon A., Gottschalck, Jonathan, Gregg, Margarita C., Griffiths, Georgina, Grooss, Jens-Uwe, Guard, Charles Chip, Gupta, Shashi K., Hall, Bradley D., Halpert, Michael S., Harada, Yayoi, Hauri, C., Heidinger, Andrew K., Heikkila, Anu, Heim, Richard R., Heimbach, Patrick, Hidalgo, Hugo G., Hilburn, Kyle, Ho, Shu-Peng, Hobbs, Will R., Holgate, Simon, Hovsepyan, Anahit, Hu Zeng-Zhen, Hughes, P., Hurst, Dale F., Ingvaldsen, R., Inness, Antje, Jaimes, Ena, Jakobsson, Martin, James, Adamu I., Jeffries, Martin O., Johns, William E., Johnsen, Bjorn, Johnson, Gregory C., Johnson, Bryan, Jones, Luke T., Jumaux, Guillaume, Kabidi, Khadija, Kaiser, Johannes W., Kamga, Andre, Kang, Kyun-Kuk, Kanzow, Torsten O., Kao, Hsun-Ying, Keller, Linda M., Kennedy, John J., Key, J., Khatiwala, Samar, Pour, H. Kheyrollah, Kholodov, A. L., Khoshkam, Mahbobeh, Kijazi, Agnes, Kikuchi, T., Kim, B. -M, Kim, S. -J, Kimberlain, Todd B., Knaff, John A., Korshunova, Natalia N., Koskela, T., Kousky, Vernon E., Kramarova, Natalya, Kratz, David P., Krishfield, R., Kruger, Andries, Kruk, Michael C., Kumar, Arun, Lagerloef, Gary S. E., Lakkala, K., Lander, Mark A., Landsea, Chris W., Lankhorst, Matthias, Laurila, T., Lazzara, Matthew A., Lee, Craig, Leuliette, Eric, Levitus, Sydney, L Heureux, Michelle, Lieser, Jan, Lin, I-I, Liu, Y. Y., Liu, Y., Liu Hongxing, Liu Yanju, Lobato-Sanchez, Rene, Locarnini, Ricardo, Loeb, Norman G., Loeng, H., Long, Craig S., Lorrey, Andrew M., Luhunga, P., Lumpkin, Rick, Luo Jing-Jia, Lyman, John M., Macdonald, Alison M., Maddux, Brent C., Malekela, C., Manney, Gloria, Marchenko, S. S., Marengo, Jose A., Marotzke, Jochem, Marra, John J., Martinez-Gueingla, Rodney, Massom, Robert A., Mathis, Jeremy T., Mcbride, Charlotte, Mccarthy, Gerard, Mcvicar, Tim R., Mears, Carl, Meier, W., Meinen, Christopher S., Menendez, Melisa, Merrifield, Mark A., Mitchard, Edward, Mitchum, Gary T., Montzka, Stephen A., Morcrette, Jean-Jacques, Mote, Thomas, Muehle, Jens, Muehr, Bernhard, Mullan, A. Brett, Mueller, Rolf, Nash, Eric R., Nerem, R. Steven, Newlin, Michele L., Newman, Paul A., Ng Ongolo, H., Nieto, Juan Jose, Nishino, S., Nitsche, Helga, Noetzli, Jeannette, Oberman, N. G., Obregon, Andre, Ogallo, Laban A., Oludhe, Christopher S., Omar, Mohamed I., Overland, James, Oyunjargal, Lamjav, Parinussa, Robert M., Park, Geun-Ha, Park, E-Hyung, Parker, David, Pasch, Richard J., Pascual-Ramirez, Reynaldo, Pelto, Mauri S., Penalba, Olga, Peng, L., Perovich, Don K., Pezza, Alexandre B., Phillips, David, Pickart, R., Pinty, Bernard, Pitts, Michael C., Purkey, Sarah G., Quegan, Shaun, Quintana, Juan, Rabe, B., Rahimzadeh, Fatemeh, Raholijao, Nirivololona, Raiva, I., Rajeevan, Madhavan, Ramiandrisoa, Voahanginirina, Ramos, Alexandre, Ranivoarissoa, Sahondra, Rayner, Nick A., Rayner, Darren, Razuveav, Vyacheslav N., Reagan, James, Reid, Phillip, Renwick, James, Revedekar, Jayashree, Richter-Menge, Jacqueline, Rivera, Ingrid L., Robinson, David A., Rodell, Matthew, Romanovsky, Vladimir E., Ronchail, Josyane, Karen Rosenlof, Sabine, Christopher L., Salvador, Mozar A., Sanchez-Lugo, Ahira, Santee, Michelle L., Sasgen, I., Sawaengphokhai, P., Sayouri, Amal, Scambos, Ted A., Schauer, U., Schemm, Jae, Schlosser, P., Schmid, Claudia, Schreck, Carl, Semiletov, Igor, Send, Uwe, Sensoy, Serhat, Setzer, Alberto, Severinghaus, Jeffrey, Shakhova, Natalia, Sharp, M., Shiklomanov, Nicolai I., Siegel, David A., Silva, Viviane B. S., Silva, Frabricio D. S., Sima, Fatou, Simeonov, Petio, Simmonds, I., Simmons, Adrian, Skansi, Maria, Smeed, David A., Smethie, W. M., Smith, Adam B., Smith, Cathy, Smith, Sharon L., Smith, Thomas M., Sokolov, V., Srivastava, A. K., Stackhouse, Paul W., Stammerjohn, Sharon, Steele, M., Steffen, Konrad, Steinbrecht, Wolfgang, Stephenson, Tannecia, Su, J., Svendby, T., Sweet, William, Takahashi, Taro, Tanabe, Raymond M., Taylor, Michael A., Tedesco, Marco, Teng, William L., Thepaut, Jean-Noel, Thiaw, Wassila M., Thoman, R., Thompson, Philip, Thorne, Peter W., Timmermans, M. -L, Tobin, Skie, Toole, J., Trewin, Blair C., Trigo, Ricardo M., Trotman, Adrian, Tschudi, M., Wal, Roderik S. W., Werf, Guido R., Vautard, Robert, Vazquez, J. L., Vieira, Goncalo, Vincent, Lucie, Vose, Russ S., Wagner, Wolfgang W., Wahr, John, Walsh, J., Wang Junhong, Wang Chunzai, Wang, M., Wang Sheng-Hung, Wang Lei, Wanninkhof, Rik, Weaver, Scott, Weber, Mark, Werdell, P. Jeremy, Whitewood, Robert, Wijffels, Susan, Wilber, Anne C., Wild, J. D., Willett, Kate M., Williams, W., Willis, Joshua K., Wolken, G., Wong, Takmeng, Woodgate, R., Worthy, D., Wouters, B., Wovrosh, Alex J., Xue Yan, Yamada, Ryuji, Yin Zungang, Yu Lisan, Zhang Liangying, Zhang Peiqun, Zhao Lin, Zhao, J., Zhong, W., Ziemke, Jerry, and Zimmermann, S.
135. State of the climate in 2017
- Author
-
Abernethy, R., Ackerman, S. A., Adler, R., Albanil Encarnación, A., Aldeco, L. S., Alfaro, E. J., Aliaga-Nestares, V., Allan, R. P., Allan, R., Alves, L. M., Amador, J. A., Anderson, J., Andreassen, L. M., Argüez, A., Armitage, C., Arndt, D. S., Avalos, G., Azorin-Molina, C., Báez, J., Bardin, M. Yu, Barichivich, J., Baringer, M. O., Barreira, S., Baxter, S., Beck, H. E., Becker, A., Bedka, K. M., Behe, C., Bell, G. D., Bellouin, N., Belmont, M., Benedetti, A., Bernhard, G. H., Berrisford, P., Berry, D. I., Bhatt, U. S., Bissolli, P., Bjerke, J., Blake, E. S., Blenkinsop, S., Blunden, J., Bolmgren, K., Bosilovich, M. G., Boucher, O., Bouchon, M., Box, J. E., Boyer, T., Braathen, G. O., Bromwich, D. H., Brown, R., Buehler, S., Bulygina, O. N., Burgess, D., Calderón, B., Camargo, S. J., Campbell, E. C., Campbell, J. D., Cappelen, J., Carrea, L., Carter, B. R., Castro, A., Chambers, D. P., lijing cheng, Christiansen, H. H., Christy, J. R., Chung, E. -S, Clem, K. R., Coelho, C. A. S., Coldewey-Egbers, M., Colwell, S., Cooper, O. R., Copland, L., Costanza, C., Covey, C., Coy, L., Cronin, T., Crouch, J., Cruzado, L., Daniel, R., Davis, S. M., Davletshin, S. G., Eyto, E., Jeu, R. A. M., La Cour, J. L., Laat, J., Gasperi, C. L., Degenstein, D., Deline, P., Demircan, M., Derksen, C., Dewitte, B., Dhurmea, R., Di Girolamo, L., Diamond, H. J., Dickerson, C., Dlugokencky, E. J., Dohan, K., Dokulil, M. T., Dolman, A. J., Domingues, C. M., Domingues, R., Donat, M. G., Dong, S., Dorigo, W. A., Drozdov, D. S., Dunn, R. J. H., Durre, I., Dutton, G. S., Eakin, C. M., El Kharrim, M., Elkins, J. W., Epstein, H. E., Espinoza, J. C., Famiglietti, J. S., Farmer, J., Farrell, S., Fauchald, P., Fausto, R. S., Feely, R. A., Feng, Z., Fenimore, C., Fettweis, X., Fioletov, V. E., Flemming, J., Fogt, R. L., Folland, C., Forbes, B. C., Foster, M. J., Francis, S. D., Franz, B. A., Frey, R. A., Frith, S. M., Froidevaux, L., Ganter, C., Geiger, E. F., Gerland, S., Gilson, J., Gobron, N., Goldenberg, S. B., Gomez, A. M., Goni, G., Grooß, J. U., Gruber, A., Guard, C. P., Gugliemin, M., Gupta, S. K., Gutiérrez, D., Haas, C., Hagos, S., Hahn, S., Haimberger, L., Hall, B. D., Halpert, M. S., Hamlington, B. D., Hanna, E., Hansen, K., Hanssen-Bauer, L., Harris, I., Hartfield, G., Heidinger, A. K., Heim, R. R., Helfrich, S., Hemming, D. L., Hendricks, S., Hernández, R., Hernández, S. M., Heron, S. F., Heuzé, C., Hidalgo, H. G., Ho, S. -P, Hobbs, W. R., Horstkotte, T., Huang, B., Hubert, D., Hueuzé, C., Hurst, D. F., Ialongo, I., Ibrahim, M. M., Ijampy, J. A., Inness, A., Isaac, V., Isaksen, K., Ishii, M., Jacobs, S. J., Jeffries, M. O., Jevrejeva, S., Jiménez, C., Jin, X., John, V., Johns, W. E., Johnsen, B., Johnson, B., Johnson, G. C., Johnson, K. S., Jones, P. D., Jumaux, G., Kabidi, K., Kaiser, J. W., Karaköylü, E. M., Kato, S., Kazemi, A., Keller, L. M., Kennedy, J., Kerr, K., Khan, M. S., Kholodov, A. L., Khoshkam, M., Killick, R., Kim, H., Kim, S. -J, Klotzbach, P. J., Knaff, J. A., Kohler, J., Korhonen, J., Korshunova, N. N., Kramarova, N., Kratz, D. P., Kruger, A., Kruk, M. C., Krumpen, T., Ladd, C., Lakatos, M., Lakkala, K., Lander, M. A., Landschützer, P., Landsea, C. W., Lankhorst, M., Lavado-Casimiro, W., Lazzara, M. A., Lee, S. -E, Lee, T. C., Leuliette, E., L Heureux, M., Li, T., Lieser, J. L., Lin, I. -I, Mears, C. A., Liu, G., Li, B., Liu, H., Locarnini, R., Loeb, N. G., Long, C. S., López, L. A., Lorrey, A. M., Loyola, D., Lumpkin, R., Luo, J. -J, Luojus, K., Luthcke, S., Macias-Fauria, M., Malkova, G. V., Manney, G. L., Marcellin, V., Marchenko, S. S., Marengo, J. A., Marín, D., Marra, J. J., Marszelewski, W., Martens, B., Martin, A., Martínez, A. G., Martínez-Güingla, R., Martínez-Sánchez, O., Marsh, B. L., Lyman, J. M., Massom, R. A., May, L., Mayer, M., Mazloff, M., Mcbride, C., Mccabe, M. F., Mccarthy, M., Meier, W., Meijers, A. J. S., Mekonnen, A., Mengistu Tsidu, G., Menzel, W. P., Merchant, C. J., Meredith, M. P., Merrifield, M. A., Miller, B., Miralles, D. G., Mitchum, G. T., Mitro, S., Moat, B., Mochizuki, Y., Monselesan, D., Montzka, S. A., Mora, N., Morice, C., Mosquera-Vásquez, K., Mostafa, A. E., Mote, T., Mudryk, L., Mühle, J., Mullan, A. B., Müller, R., Myneni, R., Nash, E. R., Nerem, R. S., Newman, L., Newman, P. A., Nielsen-Gammon, J. W., Nieto, J. J., Noetzli, J., Noll, B. E., O Neel, S., Osborn, T. J., Osborne, E., Overland, J., Oyunjargal, L., Park, T., Pasch, R. J., Pascual-Ramírez, R., Pastor Saavedra, M. A., Paterson, A. M., Paulik, C., Pearce, P. R., Peltier, A., Pelto, M. S., Peng, L., Perkins-Kirkpatrick, S. E., Perovich, D., Petropavlovskikh, I., Pezza, A. B., Phillips, C., Phillips, D., Phoenix, G., Pinty, B., Pinzon, J., Po-Chedley, S., Polashenski, C., Purkey, S. G., Quispe, N., Rajeevan, M., Rakotoarimalala, C., Rayner, D., Raynolds, M. K., Reagan, J., Reid, P., Reimer, C., Rémy, S., Revadekar, J. V., Richardson, A. D., Richter-Menge, J., Ricker, R., Rimmer, A., Robinson, D. A., Rodell, M., Rodriguez Camino, E., Romanovsky, V. E., Ronchail, J., Rosenlof, K. H., Rösner, B., Roth, C., Roth, D. M., Rusak, J. A., Rutishäuser, T., Sallée, J. -B, Sánchez-Lugo, A., Santee, M. L., Sasgen, L., Sawaengphokhai, P., Sayad, T. A., Sayouri, A., Scambos, T. A., Scanlon, T., Schenzinger, V., Schladow, S. G., Schmid, C., Schmid, M., Schreck, C. J., Selkirk, H. B., Send, U., Sensoy, S., Sharp, M., Shi, L., Shiklomanov, N. I., Shimaraeva, S. V., Siegel, D. A., Silow, E., Sima, F., Simmons, A. J., Skirving, W. J., Smeed, D. A., Smeets, C. J. P. P., Smith, A., Smith, S. L., Soden, B., Sofieva, V., Sparks, T. H., Spence, J. M., Spillane, S., Srivastava, A. K., Stackhouse, P. W., Stammerjohn, S., Stanitski, D. M., Steinbrecht, W., Stella, J. L., Stengel, M., Stephenson, K., Stephenson, T. S., Strahan, S., Streletskiy, D. A., Strong, A. E., Sun-Mack, S., Sutton, A. J., Swart, S., Sweet, W., Takahashi, K. S., Tamar, G., Taylor, M. A., Tedesco, M., Thackeray, S. J., Thoman, R. L., Thompson, P., Thomson, L., Thorsteinsson, T., Timbal, B., Timmermans, M. -L, Timofeyev, M. A., Tirak, K. V., Tobin, S., Togawa, H., Tømmervik, H., Tourpali, K., Trachte, K., Trewin, B. C., Triñanes, J. A., Trotman, A. R., Tschudi, M., Tucker, C. J., Tye, M. R., As, D., Wal, R. S. W., Ronald, J. A., Schalie, R., Schrier, G., Werf, G. R., Meerbeeck, C. J., Velden, C. S., Velicogna, I., Verburg, P., Vickers, H., Vincent, L. A., Vömel, H., Vose, R. S., Wagner, W., Walker, D. A., Walsh, J., Wang, B., Wang, J., Wang, L., Wang, M., Wang, R., Wang, S. -H, Wanninkhof, R., Watanabe, S., Weber, M., Webster, M., Weller, R. A., Westberry, T. K., Weyhenmeyer, G. A., Whitewood, R., Widlansky, M. J., Wiese, D. N., Wijffels, S. E., Wilber, A. C., Wild, J. D., Willett, K. M., Willis, J. K., Wolken, G., Wong, T., Wood, E. F., Wood, K., Woolway, R. I., Wouters, B., Xue, Y., Yin, X., Yoon, H., York, A., Yu, L., Zambrano, E., Zhang, H. -M, Zhang, P., Zhao, G., Zhao, L., Zhu, Z., Ziel, R., Ziemke, J. R., Ziese, M. G., Griffin, J., Hammer, G., Love-Brotak, S. E., Misch, D. J., Riddle, D. B., Slagle, M., Sprain, M., Veasey, S. W., and Mcvicar, T. R.
- Subjects
Meteor (satellite) ,Atmospheric Science ,Climate Research ,010504 meteorology & atmospheric sciences ,Climate change ,010501 environmental sciences ,01 natural sciences ,SDG 11 - Sustainable Cities and Communities ,Klimatforskning ,El Niño Southern Oscillation ,13. Climate action ,Climatology ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Environmental science ,SDG 14 - Life Below Water ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,0105 earth and related environmental sciences - Abstract
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991.
- Full Text
- View/download PDF
136. State of the climate in 2013
- Author
-
Blunden, J., Arndt, D. S., Willett, K. M., Dolman, A. J., Hurst, D. F., Rennie, J., Thorne, P. W., Donat, M. G., Dunn, R. J. H., Long, C. S., Christy, J. R., Noetzli, J., Christiansen, H. H., Gugliemin, M., Romanovsky, V. E., Shiklomanov, N. I., Smith, S. L., Zhao, L., Robinson, D. A., Pelto, M. S., Mears, C. A., Ho, S.-O. B., Peng, L., Wang, J., Vose, R. S., Hilburn, K., Yin, X., Kruk, M. C., Becker, A., Foster, M. J., Ackerman, S. A., Heidinger, A. K., Maddux, B. C., Stengel, M., Kim, H., Oki, T., Rodell, M., Chambers, D. P., Famiglietti, J. S., Dorigo, W. A., Chung, D., Parinussa, R. M., Reimer, C., Hahn, S., Liu, Y. Y., Wagner, W. W., de Jeu, R. A. M., Paulik, C., Wang, G., Allan, R., Folland, C. K., Tobin, I., Berrisford, P., Vautard, R., McVicar, T. R., Kratz, D. P., Stackhouse, P.W., Wong, T., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Lantz, K. O., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G. S., Mühle, J., Elkins, J. W., Benedetti, A., Jones, L. T., Kaiser, J. W., Morcrette, J.-J., Remy, S., Weber, M., Steinbrecht, W., van der A., R. J., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Loyola, D., Wild, J. D., Davis, S. M., Rosenlof, K. H., Cooper, O. R., Ziemke, J., Flemming, J., Inness, A., Quegan, S., Ciais, P., Santoro, M., Pinty, B., Gobron, N., van der Werf, G. R., Newlin, M. L., Gregg, M. C., Xue, Y., Hu, Z.-Z., Kumar, A., Banzon, V., Smith, T. M., Rayner, N. A., Johnson, G. C., Lyman, J. M., Willis, J. K., Boyer, T., Antonov, J., Good, S. A., Domingues, C. M., Bindoff, N., Yu, L., Jin, X., Lagerloef, G. S. E., Kao, H.-Y., Reagan, J., Schmid, C., Locarnini, R., Lumpkin, R., Goni, G., Dohan, K., Baringer, M. O., McCarthy, G., Lankhorst, M., Smeed, D. A., Send, U., Rayner, D., Johns, W. E., Meinen, C. S., Cunningham, S. A., Kanzow, T. O., Frajka-Williams, E., Marotzke, J., Garzoli, S., Dong, S., Volkov, D., Hobbs, W. R., Merrifield, M. A., Thompson, P., Leuliette, E., Nerem, R. S., Hamlington, B., Mitchum, G. T., McInnes, K., Marra, J. J., Menendez, M., Sweet, W., Feely, R. A., Wanninkhof, R., Sabine, C. L., Mathis, J. T., Takahashi, T., Khatiwala, S., Franz, B. A., Behrenfeld, M. J., Siegel, D. A., Werdell, P. J., Diamond, H. J., Bell, G. D., L'Heureux, M., Halpert, M. S., Baxter, S., Gottschalck, J., Landsea, C. W., Goldenberg, S. B., Pasch, R. J., Blake, E. S., Schemm, J., Kimberlain, T. B., Schreck, C. J., Evans, T.E., Camargo, S. J., Gleason, K. L., Trewin, B. C., Lorrey, A. M., Fauchereau, N. C., Chappell, P. R., Ready, S., Goni, G. J., Knaff, J. A., Lin, I.-I., Wang, B., Mullan, A. B., Pezza, A. B., Coelho, C A. S., Wang, C., Fogarty, C. T., Klotzbach, P., Luo, J.-J., Lander, M. A., Guard, C. P. C., Jeffries, M. O., Richter-Menge, J., Overland, J., Key, J., Hanna, E., Hanssen-Bauer, I., Kim, B.-M., Kim, S.-J., Walsh, J., Wang, M., Bhatt, U. S., Liu, Y., Stone, R., Cox, C., Walden, V., Francis, J., Vavrus, S., Tang, Q., Bernhard, G., Manney, G., Grooss, J.-U., Muller, R., Heikkila, A., Johnsen, B., Koskela, T., Lakkala, K., Svendby, T., Dahlback, A., Bruhwiler, L., Laurila, T., Worthy, D., Quinn, P. K., Stohl, A., Baklanov, A., Flanner, M. G., Herber, A., Kupiainen, K., Law, K. S., Schmale, J., Sharma, S., Vestreng, V., Von Salzen, K., Perovich, D., Gerland, S., Hendricks, S., Meier, W., Nicolaus, M., Tschudi, M., Timmermans, M.-L., Ashik, I., Frolov, I., Ha, H. K., Ingvaldsen, R., Kikuchi, T., Kim, T. W., Krishfield, R., Loeng, H., Nishino, S., Pickart, R., Polyakov, I., Rabe, B., Schauer, U., Schlosser, P., Smethie, W. M., Sokolov, V., Steele, M., Toole, J., Williams, W., Woodgate, R., Zimmerman, S., Cross, J. N., Evans, W., Anderson, L., Yamamoto-Kawai, M., Derksen, C., Brown, R., Luojus, K., Sharp, M., Wolken, G., Geai, M.-L., Burgess, D., Arendt, A., Wouters, B., Kohler, J., Andreassen, L. M., Tedesco, M., Box, J. E., Cappelen, J., Fettweis, X., Jensen, T. S., Mote, T., Rennermalm, A. K., Smith, L. C., van de Wal, R. S. W., Wahr, J., Duguay, C. R., Brown, L. C., Kang, K.-K., Kheyrollah Pour, H., Streletskiy, D. A., Drozdov, D. S., Malkova, G. V., Oberman, N. G., Kholodov, A. L., Marchenko, S. S., Fogt, R. L., Scambos, T.A., Clem, K.R., Barreira, S., Colwell, S., Keller, L.M., Lazzara, M.A., Setzer, A., Bromwich, D.H., Wang, S.-H., Wang, L., Liu, H., Wang, S., Shu, S., Massom, R.A., Reid, P., Stammerjohn, S., Lieser, J., Newman, P.A., Kramarova, N., Nash, E.R., Pitts, M.C., Johnson, B.f, Santee, M.L., Braathen, G.O., Campbell, G.G., Pope, A., Haran, T., Sanchez-Lugo, A., Renwick, J.A., Thiaw, W.M., Weaver, S.J., Vincent, L.A., Phillips, D., Whitewood, R., Crouch, J., Heim, Jr., Fenimore, C., Augustine, J., Pascual, R., Albanil, A., Vazquez, J.L., Lobato, R., Amador, J.A., Alfaro, E.J., Hidalgo, H.G., Duran-Quesada, A.M., Calderon, B., Rivera, I.L., Vega, C., Stephenson, T.S., Taylor, M.A., Trotman, A.R., Porter, A.O., Gonzalez, I.T., Spence, J.M., McLean, N., Campbell, J.D., Brown, G., Butler, M., Blenman, R.C., Aaron-Morrison, A.P., Marcellin-Honore, V., Martinez, R., Arevalo, J., Carrasco, G., Euscategui, C., Bazo, J., Nieto, J.J., Zambrano, E., Marengo, J.A., Alves, L.M., Espinoza, J.C., Ronchail, J., Bidegain, M., Stella, J.L., Penalba, O.C., Kabidi, K., Sayouri, A., Ebrahim, A., James, I.A., Dekaa, F.S., Sima, F., Coulibaly, K.A., Gitau, W., Chang'a, L., Oludhe, C.S., Ogallo, L.A., Atheru, Z., Ambenje, P., Kijazi, A., Ng'ongolo, H., Luhunga, P., Levira, P., Kruger, A., McBride, C., Rakotomavo, Z., Jumaux, G., Trachte, K., Bissolli, P., Obregon, A., Nitsche, H., Parker, D., Kennedy, J.J., Kendon, M., Trigo, R., Barriopedro, D., Ramos, A., Sensoy, S., Hovhannisyan, D., Bulygina, O.N., Khoshkam, M., Korshunova, N.N., Oyunjargal, L., Park, E.-H., Rahimzadeh, F., Rajeevan, M., Razuvaev, V.N., Revadekar, J.V., Srivastava, A.K., Yamada, R., Zhang, P., Tanaka, S., Yoshimatsu, K., Ohno, H., Ganter, C., Macara, G.R., McGree, S., Tobin, S., Blunden, J., Arndt, D. S., Willett, K. M., Dolman, A. J., Hurst, D. F., Rennie, J., Thorne, P. W., Donat, M. G., Dunn, R. J. H., Long, C. S., Christy, J. R., Noetzli, J., Christiansen, H. H., Gugliemin, M., Romanovsky, V. E., Shiklomanov, N. I., Smith, S. L., Zhao, L., Robinson, D. A., Pelto, M. S., Mears, C. A., Ho, S.-O. B., Peng, L., Wang, J., Vose, R. S., Hilburn, K., Yin, X., Kruk, M. C., Becker, A., Foster, M. J., Ackerman, S. A., Heidinger, A. K., Maddux, B. C., Stengel, M., Kim, H., Oki, T., Rodell, M., Chambers, D. P., Famiglietti, J. S., Dorigo, W. A., Chung, D., Parinussa, R. M., Reimer, C., Hahn, S., Liu, Y. Y., Wagner, W. W., de Jeu, R. A. M., Paulik, C., Wang, G., Allan, R., Folland, C. K., Tobin, I., Berrisford, P., Vautard, R., McVicar, T. R., Kratz, D. P., Stackhouse, P.W., Wong, T., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Lantz, K. O., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G. S., Mühle, J., Elkins, J. W., Benedetti, A., Jones, L. T., Kaiser, J. W., Morcrette, J.-J., Remy, S., Weber, M., Steinbrecht, W., van der A., R. J., Coldewey-Egbers, M., Fioletov, V. E., Frith, S. M., Loyola, D., Wild, J. D., Davis, S. M., Rosenlof, K. H., Cooper, O. R., Ziemke, J., Flemming, J., Inness, A., Quegan, S., Ciais, P., Santoro, M., Pinty, B., Gobron, N., van der Werf, G. R., Newlin, M. L., Gregg, M. C., Xue, Y., Hu, Z.-Z., Kumar, A., Banzon, V., Smith, T. M., Rayner, N. A., Johnson, G. C., Lyman, J. M., Willis, J. K., Boyer, T., Antonov, J., Good, S. A., Domingues, C. M., Bindoff, N., Yu, L., Jin, X., Lagerloef, G. S. E., Kao, H.-Y., Reagan, J., Schmid, C., Locarnini, R., Lumpkin, R., Goni, G., Dohan, K., Baringer, M. O., McCarthy, G., Lankhorst, M., Smeed, D. A., Send, U., Rayner, D., Johns, W. E., Meinen, C. S., Cunningham, S. A., Kanzow, T. O., Frajka-Williams, E., Marotzke, J., Garzoli, S., Dong, S., Volkov, D., Hobbs, W. R., Merrifield, M. A., Thompson, P., Leuliette, E., Nerem, R. S., Hamlington, B., Mitchum, G. T., McInnes, K., Marra, J. J., Menendez, M., Sweet, W., Feely, R. A., Wanninkhof, R., Sabine, C. L., Mathis, J. T., Takahashi, T., Khatiwala, S., Franz, B. A., Behrenfeld, M. J., Siegel, D. A., Werdell, P. J., Diamond, H. J., Bell, G. D., L'Heureux, M., Halpert, M. S., Baxter, S., Gottschalck, J., Landsea, C. W., Goldenberg, S. B., Pasch, R. J., Blake, E. S., Schemm, J., Kimberlain, T. B., Schreck, C. J., Evans, T.E., Camargo, S. J., Gleason, K. L., Trewin, B. C., Lorrey, A. M., Fauchereau, N. C., Chappell, P. R., Ready, S., Goni, G. J., Knaff, J. A., Lin, I.-I., Wang, B., Mullan, A. B., Pezza, A. B., Coelho, C A. S., Wang, C., Fogarty, C. T., Klotzbach, P., Luo, J.-J., Lander, M. A., Guard, C. P. C., Jeffries, M. O., Richter-Menge, J., Overland, J., Key, J., Hanna, E., Hanssen-Bauer, I., Kim, B.-M., Kim, S.-J., Walsh, J., Wang, M., Bhatt, U. S., Liu, Y., Stone, R., Cox, C., Walden, V., Francis, J., Vavrus, S., Tang, Q., Bernhard, G., Manney, G., Grooss, J.-U., Muller, R., Heikkila, A., Johnsen, B., Koskela, T., Lakkala, K., Svendby, T., Dahlback, A., Bruhwiler, L., Laurila, T., Worthy, D., Quinn, P. K., Stohl, A., Baklanov, A., Flanner, M. G., Herber, A., Kupiainen, K., Law, K. S., Schmale, J., Sharma, S., Vestreng, V., Von Salzen, K., Perovich, D., Gerland, S., Hendricks, S., Meier, W., Nicolaus, M., Tschudi, M., Timmermans, M.-L., Ashik, I., Frolov, I., Ha, H. K., Ingvaldsen, R., Kikuchi, T., Kim, T. W., Krishfield, R., Loeng, H., Nishino, S., Pickart, R., Polyakov, I., Rabe, B., Schauer, U., Schlosser, P., Smethie, W. M., Sokolov, V., Steele, M., Toole, J., Williams, W., Woodgate, R., Zimmerman, S., Cross, J. N., Evans, W., Anderson, L., Yamamoto-Kawai, M., Derksen, C., Brown, R., Luojus, K., Sharp, M., Wolken, G., Geai, M.-L., Burgess, D., Arendt, A., Wouters, B., Kohler, J., Andreassen, L. M., Tedesco, M., Box, J. E., Cappelen, J., Fettweis, X., Jensen, T. S., Mote, T., Rennermalm, A. K., Smith, L. C., van de Wal, R. S. W., Wahr, J., Duguay, C. R., Brown, L. C., Kang, K.-K., Kheyrollah Pour, H., Streletskiy, D. A., Drozdov, D. S., Malkova, G. V., Oberman, N. G., Kholodov, A. L., Marchenko, S. S., Fogt, R. L., Scambos, T.A., Clem, K.R., Barreira, S., Colwell, S., Keller, L.M., Lazzara, M.A., Setzer, A., Bromwich, D.H., Wang, S.-H., Wang, L., Liu, H., Wang, S., Shu, S., Massom, R.A., Reid, P., Stammerjohn, S., Lieser, J., Newman, P.A., Kramarova, N., Nash, E.R., Pitts, M.C., Johnson, B.f, Santee, M.L., Braathen, G.O., Campbell, G.G., Pope, A., Haran, T., Sanchez-Lugo, A., Renwick, J.A., Thiaw, W.M., Weaver, S.J., Vincent, L.A., Phillips, D., Whitewood, R., Crouch, J., Heim, Jr., Fenimore, C., Augustine, J., Pascual, R., Albanil, A., Vazquez, J.L., Lobato, R., Amador, J.A., Alfaro, E.J., Hidalgo, H.G., Duran-Quesada, A.M., Calderon, B., Rivera, I.L., Vega, C., Stephenson, T.S., Taylor, M.A., Trotman, A.R., Porter, A.O., Gonzalez, I.T., Spence, J.M., McLean, N., Campbell, J.D., Brown, G., Butler, M., Blenman, R.C., Aaron-Morrison, A.P., Marcellin-Honore, V., Martinez, R., Arevalo, J., Carrasco, G., Euscategui, C., Bazo, J., Nieto, J.J., Zambrano, E., Marengo, J.A., Alves, L.M., Espinoza, J.C., Ronchail, J., Bidegain, M., Stella, J.L., Penalba, O.C., Kabidi, K., Sayouri, A., Ebrahim, A., James, I.A., Dekaa, F.S., Sima, F., Coulibaly, K.A., Gitau, W., Chang'a, L., Oludhe, C.S., Ogallo, L.A., Atheru, Z., Ambenje, P., Kijazi, A., Ng'ongolo, H., Luhunga, P., Levira, P., Kruger, A., McBride, C., Rakotomavo, Z., Jumaux, G., Trachte, K., Bissolli, P., Obregon, A., Nitsche, H., Parker, D., Kennedy, J.J., Kendon, M., Trigo, R., Barriopedro, D., Ramos, A., Sensoy, S., Hovhannisyan, D., Bulygina, O.N., Khoshkam, M., Korshunova, N.N., Oyunjargal, L., Park, E.-H., Rahimzadeh, F., Rajeevan, M., Razuvaev, V.N., Revadekar, J.V., Srivastava, A.K., Yamada, R., Zhang, P., Tanaka, S., Yoshimatsu, K., Ohno, H., Ganter, C., Macara, G.R., McGree, S., and Tobin, S.
- Abstract
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific
137. Sea ice cover.
- Author
-
Perovich, D., Meier, W., Tschudi, M., Farrell, S., Gerland, S., and Hendricks, S.
- Subjects
GLACIERS & climate ,ICE sheets ,PROPERTIES of matter ,GLACIAL melting ,TEMPERATURE measurements - Abstract
The article offers information on ice extent anomalies in 2015. Topics discussed key variables used to describe the state of the ice cover including sea ice extent, the age of sea ice serves as an indicator for physical properties of ice which describe its surface roughness melt pond coverage, and thickness, and the sea ice thickness and volume.
- Published
- 2016
138. Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: some implications for optical satellite remote sensing studies
- Author
-
Blanco, A., Ivanov, B., Winther, J.-G., Orbaek, J. B., Gerland, S., and Boike, J.
- Subjects
ALBEDO ,HYDROLOGY ,POLLUTION ,REMOTE sensing - Abstract
Field campaigns were undertaken in May and June of 1992 and 1997 in order to study spectral reflectance characteristics of snow during melt-off. The investigations were performed on snow-covered tundra at Ny-Alesund, Svalbard (79 deg. N). Spectral measurements were acquired with spectroradiometers covering wavelengths from 350 to 2500 nm. Supporting measurements such as snow thickness, density, content of liquid water, grain size and shape, stratification of snowpack, as well as cloud observations and air temperature, were monitored throughout the field campaigns. Spectral measurements demonstrate that the near-infrared albedo is most affected by the ongoing snow metamorphism while the albedo in the visible wavelength range is more strongly affected by surface pollution. Comparisons of spectral measurements and spectrally integrated measurements emphasize the need for narrow-band to broad-band conversion when applying satellite-derived albedo to surface energy-balance calculations. As an example, Landsat TM Band 4 albedo is shown to produce slightly high albedo values compared to the spectrally integrated albedo (285-2800 nm). Daily albedo measurements from 1981-1997 show that the albedo normally drops from 80% to bare ground levels (10%) within two to four weeks and the date when the tundra becomes snow-free varies from early June to early July. Thus, the changing spectral characteristics of snow during melt-off combined with a general rapid decrease in albedo call for cautious use of satellite-derived albedo, especially when used as absolute numbers. Our data also illustrate the effect of cloud cover on surface albedo for an event in which the integrated albedo increased by 7% under cloudy conditions compared to clear skies without changes of surface properties. Finally, the reflectance of snow increases relative to nadir for measurements facing the sun and at azimuths 90 deg. and 180 deg. by 8, 15, 19, and 26% for viewing angles 15 deg. , 30 deg. , 45 deg. , an [ABSTRACT FROM AUTHOR]
- Published
- 1999
139. Combined airborne profiling over Fram Strait sea ice: Fractional sea-ice types, albedo and thickness measurements
- Author
-
Pedersen, C.A., Hall, R., Gerland, S., Sivertsen, A.H., Svenøe, T., and Haas, C.
- Subjects
- *
SEA ice , *ALBEDO , *ICE navigation , *DIGITAL photography , *SPECTRUM analysis instruments - Abstract
Abstract: This paper presents the data collected during an expedition from the marginal ice zone into the multi year sea ice in the Fram Strait in May–June 2005 to measure the variance in sea-ice types, albedo and thickness. It also describes the techniques used to analyze the data. The principal information from the methodologies applied derives the sea-ice types from digital photography, the spectral and broadband reflectance from spectrometer measurements and the total sea-ice thickness profile from an electromagnetic-probe. A combination of methods was used to extract more information from each data set compared to what traditionally are obtained. The digital images were standardized, textural features extracted and a trained neural network was used for classification, while the optical measurements were normalized and standardized to minimize effects from the set-up and atmospheric conditions. Measurements from June 3rd (before the onset of summer melt) showed that the fractional sea-ice types had large spatial variability, with average fractions for snow-covered sea ice of 81.0%, thick bare ice 4.0%, thin ice 5.3% and open water 9.6%, hence an average ice concentration of 90.3%. The average broadband reflectance factor was 0.73, while the average total sea-ice thickness (including snow) was 2.1 m. Relative high correlations were found between the measured albedo and sea-ice concentration (0.69). The paper also addresses the lessons learned for future fusion of data from large field campaigns. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
140. Does Your Lab Use Social Media?: Sharing Three Years of Experience in Science Communication.
- Author
-
Pavlov, A. K., Meyer, A., Rösel, A., Cohen, L., King, J., Itkin, P., Negrel, J., Gerland, S., Hudson, S. R., Dodd, P. A., de Steur, L., Mathisen, S., Cobbing, N., and Granskog, M. A.
- Subjects
- *
METEOROLOGY , *SOCIAL media , *METEOROLOGICAL observations , *SCIENTIFIC communication , *SOCIETIES - Abstract
Effective science communication is essential to share knowledge and recruit the next generation of researchers. Science communication to the general public can, however, be hampered by limited resources and a lack of incentives in the academic environment. Various social media platforms have recently emerged, providing free and simple science communication tools to reach the public and young people especially, an audience often missed by more conventional outreach initiatives. While individual researchers and large institutions are present on social media, smaller research groups are underrepresented. As a small group of oceanographers, sea ice scientists, and atmospheric scientists at the Norwegian Polar Institute, we share our experience establishing, developing, and maintaining a successful Arctic science communication initiative (@oceanseaicenpi) on Instagram, Twitter, and Facebook. The initiative is run entirely by a team of researchers with limited time and financial resources. It has built a broad audience of more than 7,000 followers, half of which is associated with the team’s Instagram account. To our knowledge, @oceanseaicenpi is one of the most successful Earth sciences Instagram accounts managed by researchers. The initiative has boosted the alternative metric scores of our publications and helped participating researchers become better writers and communicators. We hope to inspire and help other research groups by providing some guidelines on how to develop and conduct effective science communication via social media. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
141. Isotopic and Geochemical Characteristics of Western Arctic Ice-Rafted Sediments.
- Author
-
Maslov, A. V., Shevchenko, V. P., Kuznetsov, A. B., Stein, R., and Gerland, S.
- Subjects
- *
GEOCHEMICAL modeling , *GEOLOGY , *ESTUARINE ecology - Abstract
The isotope-geochemical characteristics (LaN/YbN, Sm/Nd, εNd(t), 207Pb/206Pb, and 87Sr/86Sr) of ice-rafted sediments in several areas of the Western Arctic (Fram Strait, the Yermak Plateau, the area between Spitsbergen and the North Pole) were studied. A similarity of the above characteristics to the same features of the surface sediments of the Ob and Yenisei estuaries, as well as the mouth areas of the Lena and Indigirka, was found. It was concluded that the main source of sedimentary material in the ice of these regions was the Asian continental margin. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
142. Effects of glacier runoff and wind on surface layer dynamics and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study.
- Author
-
Sundfjord, A., Albretsen, J., Kasajima, Y., Skogseth, R., Kohler, J., Nuth, C., Skarðhamar, J., Cottier, F., Nilsen, F., Asplin, L., Gerland, S., and Torsvik, T.
- Subjects
- *
HEAT transfer , *WATER masses , *OCEANOGRAPHY , *HYDROGRAPHY , *AQUATIC sciences - Abstract
A high resolution numerical ocean circulation model has been used to investigate exchange mechanisms and transport of thermal energy towards the inner part of Kongsfjorden, Svalbard; a location where tidewater glaciers expose large calving fronts to the ocean water and sea ice has been a regular winter feature until recently. Comparison of model simulations against a large set of observational data shows that the model captures the main features of seasonality and geographical distribution of hydrography. The model is able to simulate inflow of Atlantic Water although the timing, strength and depth of inflow events are not always the same in the model as in mooring records. The model shows water entering via the shelf consistently penetrating deep into the fjord, and volume transport toward the interior parts are large even under winter conditions. Heat transports are smaller in winter than in summer due to generally lower winter temperatures. Results indicate that glacial freshwater discharge in the surface layer is not a necessary factor for driving sub-surface exchange; rather, along-fjord winds stand out as important for the circulation and hence water exchange in the inner part of the fjord. The combination of inflow of Atlantic Water from the outer shelf into the central part of the fjord, and further transport of mixed water masses with intermediate heat content toward the inner part, constitutes a significant transfer of thermal energy from the outer shelf and deep into the fjord. The potential for glacier front melting is larger in summer than in winter as heat transports are larger this time of year, while even modest heat transports in the upper part of the water column may influence the sea ice cover in winter. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
143. Closing the loop – Approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007–2008
- Author
-
Mauritzen, C., Hansen, E., Andersson, M., Berx, B., Beszczynska-Möller, A., Burud, I., Christensen, K.H., Debernard, J., de Steur, L., Dodd, P., Gerland, S., Godøy, Ø., Hansen, B., Hudson, S., Høydalsvik, F., Ingvaldsen, R., Isachsen, P.E., Kasajima, Y., Koszalka, I., and Kovacs, K.M.
- Subjects
- *
INTERNATIONAL Polar Year, 2007-2008 , *SEA ice , *ARCTIC oscillation , *BIOTIC communities , *ARTIFICIAL satellites , *HYDROGRAPHY , *OCEANOGRAPHY - Abstract
Abstract: During the 4th International Polar Year 2007–2009 (IPY), it has become increasingly obvious that we need to prepare for a new era in the Arctic. IPY occurred during the time of the largest retreat of Arctic sea ice since satellite observations started in 1979. This minimum in September sea ice coverage was accompanied by other signs of a changing Arctic, including the unexpectedly rapid transpolar drift of the Tara schooner, a general thinning of Arctic sea ice and a double-dip minimum of the Arctic Oscillation at the end of 2009. Thanks to the lucky timing of the IPY, those recent phenomena are well documented as they have been scrutinized by the international research community, taking advantage of the dedicated observing systems that were deployed during IPY. However, understanding changes in the Arctic System likely requires monitoring over decades, not years. Many IPY projects have contributed to the pilot phase of a future, sustained, observing system for the Arctic. We now know that many of the technical challenges can be overcome. The Norwegian projects iAOOS-Norway, POLEWARD and MEOP were significant ocean monitoring/research contributions during the IPY. A large variety of techniques were used in these programs, ranging from oceanographic cruises to animal-borne platforms, autonomous gliders, helicopter surveys, surface drifters and current meter arrays. Our research approach was interdisciplinary from the outset, merging ocean dynamics, hydrography, biology, sea ice studies, as well as forecasting. The datasets are tremendously rich, and they will surely yield numerous findings in the years to come. Here, we present a status report at the end of the official period for IPY. Highlights of the research include: a quantification of the Meridional Overturning Circulation in the Nordic Seas (“the loop”) in thermal space, based on a set of up to 15-year-long series of current measurements; a detailed map of the surface circulation as well as characterization of eddy dispersion based on drifter data; transport monitoring of Atlantic Water using gliders; a view of the water mass exchanges in the Norwegian Atlantic Current from both Eulerian and Lagrangian data; an integrated physical–biological view of the ice-influenced ecosystem in the East Greenland Current, showing for instance nutrient-limited primary production as a consequence of decreasing ice cover for larger regions of the Arctic Ocean. Our sea ice studies show that the albedo of snow on ice is lower when snow cover is thinner and suggest that reductions in sea ice thickness, without changes in sea ice extent, will have a significant impact on the arctic atmosphere. We present up-to-date freshwater transport numbers for the East Greenland Current in the Fram Strait, as well as the first map of the annual cycle of freshwater layer thickness in the East Greenland Current along the east coast of Greenland, from data obtained by CTDs mounted on seals that traveled back and forth across the Nordic Seas. We have taken advantage of the real-time transmission of some of these platforms and demonstrate the use of ice-tethered profilers in validating satellite products of sea ice motion, as well as the use of Seagliders in validating ocean forecasts, and we present a sea ice drift product – significantly improved both in space and time – for use in operational ice-forecasting applications. We consider real-time acquisition of data from the ocean interior to be a vital component of a sustained Arctic Ocean Observing System, and we conclude by presenting an outline for an observing system for the European sector of the Arctic Ocean. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
144. Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-A˚lesund, Svalbard
- Author
-
Dowdall, M., Vicat, K., Frearson, I., Gerland, S., Lind, B., and Shaw, G.
- Subjects
- *
COAL mining , *RADIOISOTOPES , *COAL industry , *ENERGY industries , *SURVEYS - Abstract
Mineral extraction activities, such as those conducted by oil, gas and coal industries, are widespread throughout the Arctic region. Waste products of these activities can result in significant contributions to the radioactive burden of the surrounding environment due to increased concentrations of naturally occurring radioactive materials (NORM) to levels that would not normally be found in the environment. Coal mining operations commenced in the early 1900s on Svalbard and have been conducted at a variety of locations on the archipelago since then. Coal contains radionuclides of the uranium and thorium series as well as 40K. Extraction and processing of coal can result in releases of these radionuclides to the broader environment with subsequent impact on the human and non-human inhabitants of the area. This paper presents the results of a study on environmental radioactivity resulting from historical coal mining operations conducted at Ny-A˚lesund, Spitsbergen, in the Svalbard archipelago. Activity concentrations of radionuclides found in materials associated with these operations are presented as well as the results of a spatial dosimetric survey conducted over an area affected by coal mining. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
145. Regime shift in Arctic Ocean sea ice thickness.
- Author
-
Sumata H, de Steur L, Divine DV, Granskog MA, and Gerland S
- Abstract
Manifestations of climate change are often shown as gradual changes in physical or biogeochemical properties
1 . Components of the climate system, however, can show stepwise shifts from one regime to another, as a nonlinear response of the system to a changing forcing2 . Here we show that the Arctic sea ice regime shifted in 2007 from thicker and deformed to thinner and more uniform ice cover. Continuous sea ice monitoring in the Fram Strait over the last three decades revealed the shift. After the shift, the fraction of thick and deformed ice dropped by half and has not recovered to date. The timing of the shift was preceded by a two-step reduction in residence time of sea ice in the Arctic Basin, initiated first in 2005 and followed by 2007. We demonstrate that a simple model describing the stochastic process of dynamic sea ice thickening explains the observed ice thickness changes as a result of the reduced residence time. Our study highlights the long-lasting impact of climate change on the Arctic sea ice through reduced residence time and its connection to the coupled ocean-sea ice processes in the adjacent marginal seas and shelves of the Arctic Ocean., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
146. Unprecedented decline of Arctic sea ice outflow in 2018.
- Author
-
Sumata H, de Steur L, Gerland S, Divine DV, and Pavlova O
- Subjects
- Arctic Regions, Atlantic Ocean, Oceans and Seas, Ice Cover, Seawater
- Abstract
Fram Strait is the major gateway connecting the Arctic Ocean and North Atlantic Ocean, where nearly 90% of the sea ice export from the Arctic Ocean takes place. The exported sea ice is a large source of freshwater to the Nordic Seas and Subpolar North Atlantic, thereby preconditioning European climate and deep water formation in the North Atlantic Ocean. Here we show that in 2018, the ice export through Fram Strait showed an unprecedented decline since the early 1990s. The 2018 ice export was reduced to less than 40% relative to that between 2000 and 2017. The minimum export is attributed to regional sea ice-ocean processes driven by an anomalous atmospheric circulation over the Atlantic sector of the Arctic. The result indicates that a drastic change of the Arctic sea ice outflow and its environmental consequences happen not only through Arctic-wide ice thinning, but also by regional scale atmospheric anomalies., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
147. Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma.
- Author
-
Kunze B, Wein F, Fang HY, Anand A, Baumeister T, Strangmann J, Gerland S, Ingermann J, Münch NS, Wiethaler M, Sahm V, Hidalgo-Sastre A, Lange S, Lightdale CJ, Bokhari A, Falk GW, Friedman RA, Ginsberg GG, Iyer PG, Jin Z, Nakagawa H, Shawber CJ, Nguyen T, Raab WJ, Dalerba P, Rustgi AK, Sepulveda AR, Wang KK, Schmid RM, Wang TC, Abrams JA, and Quante M
- Subjects
- Adenocarcinoma diagnosis, Adenocarcinoma genetics, Aged, Animals, Barrett Esophagus diagnosis, Barrett Esophagus genetics, Biopsy, Carcinogenesis genetics, Cell Differentiation genetics, Cross-Sectional Studies, Disease Models, Animal, Disease Progression, Esophageal Mucosa cytology, Esophageal Mucosa diagnostic imaging, Esophageal Mucosa pathology, Esophageal Neoplasms diagnosis, Esophageal Neoplasms genetics, Esophagoscopy, Female, Gastric Mucosa cytology, Gastric Mucosa pathology, Humans, Male, Mice, Mice, Transgenic, Middle Aged, NF-kappa B metabolism, Prospective Studies, RNA, Messenger analysis, RNA, Messenger metabolism, Receptors, Notch genetics, Signal Transduction, Adenocarcinoma pathology, Barrett Esophagus pathology, Carcinogenesis pathology, Esophageal Neoplasms pathology, Goblet Cells pathology, Receptors, Notch metabolism
- Abstract
Background & Aims: Studies are needed to determine the mechanism by which Barrett's esophagus (BE) progresses to esophageal adenocarcinoma (EAC). Notch signaling maintains stem cells in the gastrointestinal tract and is dysregulated during carcinogenesis. We explored the relationship between Notch signaling and goblet cell maturation, a feature of BE, during EAC pathogenesis., Methods: We measured goblet cell density and levels of Notch messenger RNAs in BE tissues from 164 patients, with and without dysplasia or EAC, enrolled in a multicenter study. We analyzed the effects of conditional expression of an activated form of NOTCH2 (pL2.Lgr5.N2IC), conditional deletion of NOTCH2 (pL2.Lgr5.N2fl/fl), or loss of nuclear factor κB (NF-κB) (pL2.Lgr5.p65fl/fl), in Lgr5
+ (progenitor) cells in L2-IL1B mice (which overexpress interleukin 1 beta in esophagus and squamous forestomach and are used as a model of BE). We collected esophageal and stomach tissues and performed histology, immunohistochemistry, flow cytometry, transcriptome, and real-time polymerase chain reaction analyses. Cardia and forestomach tissues from mice were cultured as organoids and incubated with inhibitors of Notch or NF-kB., Results: Progression of BE to EAC was associated with a significant reduction in goblet cell density comparing nondysplastic regions of tissues from patients; there was an inverse correlation between goblet cell density and levels of NOTCH3 and JAG2 messenger RNA. In mice, expression of the activated intracellular form of NOTCH2 in Lgr5+ cells reduced goblet-like cell maturation, increased crypt fission, and accelerated the development of tumors in the squamocolumnar junction. Mice with deletion of NOTCH2 from Lgr5+ cells had increased maturation of goblet-like cells, reduced crypt fission, and developed fewer tumors. Esophageal tissues from in pL2.Lgr5.N2IC mice had increased levels of RelA (which encodes the p65 unit of NF-κB) compared to tissues from L2-IL1B mice, and we found evidence of increased NF-κB activity in Lgr5+ cells. Esophageal tissues from pL2.Lgr5.p65fl/fl mice had lower inflammation and metaplasia scores than pL2.Lgr5.N2IC mice. In organoids derived from pL2-IL1B mice, the NF-κB inhibitor JSH-23 reduced cell survival and proliferation., Conclusions: Notch signaling contributes to activation of NF-κB and regulates differentiation of gastric cardia progenitor cells in a mouse model of BE. In human esophageal tissues, progression of BE to EAC was associated with reduced goblet cell density and increased levels of Notch expression. Strategies to block this pathway might be developed to prevent EAC in patients with BE., (Copyright © 2020 AGA Institute. Published by Elsevier Inc. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
148. BarrettNET-a prospective registry for risk estimation of patients with Barrett's esophagus to progress to adenocarcinoma.
- Author
-
Wiethaler M, Slotta-Huspenina J, Brandtner A, Horstmann J, Wein F, Baumeister T, Radani N, Gerland S, Anand A, Lange S, Schmidt M, Janssen KP, Conrad A, Johannes W, Strauch K, Quante AS, Linkohr B, Kuhn KA, Blaser R, Lehmann A, Kohlmayer F, Weichert W, Schmid RM, Becker KF, and Quante M
- Subjects
- Adenocarcinoma etiology, Adult, Aged, Aged, 80 and over, Biomarkers analysis, Clinical Decision Rules, Disease Progression, Esophageal Neoplasms etiology, Female, Germany, Humans, Male, Middle Aged, Prospective Studies, Registries, Risk Factors, Young Adult, Adenocarcinoma diagnosis, Barrett Esophagus complications, Early Detection of Cancer methods, Esophageal Neoplasms diagnosis, Population Surveillance methods, Risk Assessment methods
- Abstract
Risk stratification in patients with Barrett's esophagus (BE) to prevent the development of esophageal adenocarcinoma (EAC) is an unsolved task. The incidence of EAC and BE is increasing and patients are still at unknown risk. BarrettNET is an ongoing multicenter prospective cohort study initiated to identify and validate molecular and clinical biomarkers that allow a more personalized surveillance strategy for patients with BE. For BarrettNET participants are recruited in 20 study centers throughout Germany, to be followed for progression to dysplasia (low-grade dysplasia or high-grade dysplasia) or EAC for >10 years. The study instruments comprise self-administered epidemiological information (containing data on demographics, lifestyle factors, and health), as well as biological specimens, i.e., blood-based samples, esophageal tissue biopsies, and feces and saliva samples. In follow-up visits according to the individual surveillance plan of the participants, sample collection is repeated. The standardized collection and processing of the specimen guarantee the highest sample quality. Via a mobile accessible database, the documentation of inclusion, epidemiological data, and pathological disease status are recorded subsequently. Currently the BarrettNET registry includes 560 participants (23.1% women and 76.9% men, aged 22-92 years) with a median follow-up of 951 days. Both the design and the size of BarrettNET offer the advantage of answering research questions regarding potential causes of disease progression from BE to EAC. Here all the integrated methods and materials of BarrettNET are presented and reviewed to introduce this valuable German registry., (© The Author(s) 2019. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus.)
- Published
- 2019
- Full Text
- View/download PDF
149. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean.
- Author
-
Graham RM, Itkin P, Meyer A, Sundfjord A, Spreen G, Smedsrud LH, Liston GE, Cheng B, Cohen L, Divine D, Fer I, Fransson A, Gerland S, Haapala J, Hudson SR, Johansson AM, King J, Merkouriadi I, Peterson AK, Provost C, Randelhoff A, Rinke A, Rösel A, Sennéchael N, Walden VP, Duarte P, Assmy P, Steen H, and Granskog MA
- Abstract
A large retreat of sea-ice in the 'stormy' Atlantic Sector of the Arctic Ocean has become evident through a series of record minima for the winter maximum sea-ice extent since 2015. Results from the Norwegian young sea ICE (N-ICE2015) expedition, a five-month-long (Jan-Jun) drifting ice station in first and second year pack-ice north of Svalbard, showcase how sea-ice in this region is frequently affected by passing winter storms. Here we synthesise the interdisciplinary N-ICE2015 dataset, including independent observations of the atmosphere, snow, sea-ice, ocean, and ecosystem. We build upon recent results and illustrate the different mechanisms through which winter storms impact the coupled Arctic sea-ice system. These short-lived and episodic synoptic-scale events transport pulses of heat and moisture into the Arctic, which temporarily reduce radiative cooling and henceforth ice growth. Cumulative snowfall from each sequential storm deepens the snow pack and insulates the sea-ice, further inhibiting ice growth throughout the remaining winter season. Strong winds fracture the ice cover, enhance ocean-ice-atmosphere heat fluxes, and make the ice more susceptible to lateral melt. In conclusion, the legacy of Arctic winter storms for sea-ice and the ice-associated ecosystem in the Atlantic Sector lasts far beyond their short lifespan.
- Published
- 2019
- Full Text
- View/download PDF
150. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice.
- Author
-
Assmy P, Fernández-Méndez M, Duarte P, Meyer A, Randelhoff A, Mundy CJ, Olsen LM, Kauko HM, Bailey A, Chierici M, Cohen L, Doulgeris AP, Ehn JK, Fransson A, Gerland S, Hop H, Hudson SR, Hughes N, Itkin P, Johnsen G, King JA, Koch BP, Koenig Z, Kwasniewski S, Laney SR, Nicolaus M, Pavlov AK, Polashenski CM, Provost C, Rösel A, Sandbu M, Spreen G, Smedsrud LH, Sundfjord A, Taskjelle T, Tatarek A, Wiktor J, Wagner PM, Wold A, Steen H, and Granskog MA
- Subjects
- Arctic Regions, Carbon Compounds, Inorganic analysis, Eutrophication, Haptophyta growth & development, Ice Cover, Nitrates analysis, Satellite Imagery, Seasons, Phytoplankton growth & development
- Abstract
The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m
-2 . Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.