271 results on '"G. Birkenmeier"'
Search Results
102. Overview of JET results for optimising ITER operation
- Author
-
J. Mailloux, N. Abid, K. Abraham, P. Abreu, O. Adabonyan, P. Adrich, V. Afanasev, M. Afzal, T. Ahlgren, L. Aho-Mantila, N. Aiba, M. Airila, M. Akhtar, R. Albanese, M. Alderson-Martin, D. Alegre, S. Aleiferis, A. Aleksa, A.G. Alekseev, E. Alessi, P. Aleynikov, J. Algualcil, M. Ali, M. Allinson, B. Alper, E. Alves, G. Ambrosino, R. Ambrosino, V. Amosov, E.Andersson Sundén, P. Andrew, B.M. Angelini, C. Angioni, I. Antoniou, L.C. Appel, C. Appelbee, S. Aria, M. Ariola, G. Artaserse, W. Arter, V. Artigues, N. Asakura, A. Ash, N. Ashikawa, V. Aslanyan, M. Astrain, O. Asztalos, D. Auld, F. Auriemma, Y. Austin, L. Avotina, E. Aymerich, A. Baciero, F. Bairaktaris, J. Balbin, L. Balbinot, I. Balboa, M. Balden, C. Balshaw, N. Balshaw, V.K. Bandaru, J. Banks, Yu.F. Baranov, C. Barcellona, A. Barnard, M. Barnard, R. Barnsley, A. Barth, M. Baruzzo, S. Barwell, M. Bassan, A. Batista, P. Batistoni, L. Baumane, B. Bauvir, L. Baylor, P.S. Beaumont, D. Beckett, A. Begolli, M. Beidler, N. Bekris, M. Beldishevski, E. Belli, F. Belli, É. Belonohy, M. Ben Yaala, J. Benayas, J. Bentley, H. Bergsåker, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, H. Betar, M. Beurskens, S. Bickerton, B. Bieg, J. Bielecki, A. Bierwage, T. Biewer, R. Bilato, P. Bílková, G. Birkenmeier, H. Bishop, J.P.S. Bizarro, J. Blackburn, P. Blanchard, P. Blatchford, V. Bobkov, A. Boboc, P. Bohm, T. Bohm, I. Bolshakova, T. Bolzonella, N. Bonanomi, D. Bonfiglio, X. Bonnin, P. Bonofiglo, S. Boocock, A. Booth, J. Booth, D. Borba, D. Borodin, I. Borodkina, C. Boulbe, C. Bourdelle, M. Bowden, K. Boyd, I.Božičević Mihalić, S.C. Bradnam, V. Braic, L. Brandt, R. Bravanec, B. Breizman, A. Brett, S. Brezinsek, M. Brix, K. Bromley, B. Brown, D. Brunetti, R. Buckingham, M. Buckley, R. Budny, J. Buermans, H. Bufferand, P. Buratti, A. Burgess, A. Buscarino, A. Busse, D. Butcher, E.de la Cal, G. Calabrò, L. Calacci, R. Calado, Y. Camenen, G. Canal, B. Cannas, M. Cappelli, S. Carcangiu, P. Card, A. Cardinali, P. Carman, D. Carnevale, M. Carr, D. Carralero, L. Carraro, I.S. Carvalho, P. Carvalho, I. Casiraghi, F.J. Casson, C. Castaldo, J.P. Catalan, N. Catarino, F. Causa, M. Cavedon, M. Cecconello, C.D. Challis, B. Chamberlain, C.S. Chang, A. Chankin, B. Chapman, M. Chernyshova, A. Chiariello, P. Chmielewski, A. Chomiczewska, L. Chone, G. Ciraolo, D. Ciric, J. Citrin, Ł. Ciupinski, M. Clark, R. Clarkson, C. Clements, M. Cleverly, J.P. Coad, P. Coates, A. Cobalt, V. Coccorese, R. Coelho, J.W. Coenen, I.H. Coffey, A. Colangeli, L. Colas, C. Collins, J. Collins, S. Collins, D. Conka, S. Conroy, B. Conway, N.J. Conway, D. Coombs, P. Cooper, S. Cooper, C. Corradino, G. Corrigan, D. Coster, P. Cox, T. Craciunescu, S. Cramp, C. Crapper, D. Craven, R. Craven, M.Crialesi Esposito, G. Croci, D. Croft, A. Croitoru, K. Crombé, T. Cronin, N. Cruz, C. Crystal, G. Cseh, A. Cufar, A. Cullen, M. Curuia, T. Czarski, H. Dabirikhah, A.Dal Molin, E. Dale, P. Dalgliesh, S. Dalley, J. Dankowski, P. David, A. Davies, S. Davies, G. Davis, K. Dawson, S. Dawson, I.E. Day, M. De Bock, G. De Temmerman, G. De Tommasi, K. Deakin, J. Deane, R. Dejarnac, D. Del Sarto, E. Delabie, D. Del-Castillo-Negrete, A. Dempsey, R.O. Dendy, P. Devynck, A. Di Siena, C. Di Troia, T. Dickson, P. Dinca, T. Dittmar, J. Dobrashian, R.P. Doerner, A.J.H. Donné, S. Dorling, S. Dormido-Canto, D. Douai, S. Dowson, R. Doyle, M. Dreval, P. Drewelow, P. Drews, G. Drummond, Ph. Duckworth, H. Dudding, R. Dumont, P. Dumortier, D. Dunai, T. Dunatov, M. Dunne, I. Ďuran, F. Durodié, R. Dux, A. Dvornova, R. Eastham, J. Edwards, Th. Eich, A. Eichorn, N. Eidietis, A. Eksaeva, H. El Haroun, G. Ellwood, C. Elsmore, O. Embreus, S. Emery, G. Ericsson, B. Eriksson, F. Eriksson, J. Eriksson, L.G. Eriksson, S. Ertmer, S. Esquembri, A.L. Esquisabel, T. Estrada, G. Evans, S. Evans, E. Fable, D. Fagan, M. Faitsch, M. Falessi, A. Fanni, A. Farahani, I. Farquhar, A. Fasoli, B. Faugeras, S. Fazinić, F. Felici, R. Felton, A. Fernandes, H. Fernandes, J. Ferrand, D.R. Ferreira, J. Ferreira, G. Ferrò, J. Fessey, O. Ficker, A.R. Field, A. Figueiredo, J. Figueiredo, A. Fil, N. Fil, P. Finburg, D. Fiorucci, U. Fischer, G. Fishpool, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, K. Flinders, S. Foley, N. Fonnesu, M. Fontana, J.M. Fontdecaba, S. Forbes, A. Formisano, T. Fornal, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, C. Fowler, E. Fransson, L. Frassinetti, M. Freisinger, R. Fresa, R. Fridström, D. Frigione, T. Fülöp, M. Furseman, V. Fusco, S. Futatani, D. Gadariya, K. Gál, D. Galassi, K. Gałązka, S. Galeani, D. Gallart, R. Galvão, Y. Gao, J. Garcia, M. García-Muñoz, M. Gardener, L. Garzotti, J. Gaspar, R. Gatto, P. Gaudio, D. Gear, T. Gebhart, S. Gee, M. Gelfusa, R. George, S.N. Gerasimov, G. Gervasini, M. Gethins, Z. Ghani, M. Gherendi, F. Ghezzi, J.C. Giacalone, L. Giacomelli, G. Giacometti, C. Gibson, K.J. Gibson, L. Gil, A. Gillgren, D. Gin, E. Giovannozzi, C. Giroud, R. Glen, S. Glöggler, J. Goff, P. Gohil, V. Goloborodko, R. Gomes, B. Gonçalves, M. Goniche, A. Goodyear, S. Gore, G. Gorini, T. Görler, N. Gotts, R. Goulding, E. Gow, B. Graham, J.P. Graves, H. Greuner, B. Grierson, J. Griffiths, S. Griph, D. Grist, W. Gromelski, M. Groth, R. Grove, M. Gruca, D. Guard, N. Gupta, C. Gurl, A. Gusarov, L. Hackett, S. Hacquin, R. Hager, L. Hägg, A. Hakola, M. Halitovs, S. Hall, S.A. Hall, S. Hallworth-Cook, C.J. Ham, D. Hamaguchi, M. Hamed, C. Hamlyn-Harris, K. Hammond, E. Harford, J.R. Harrison, D. Harting, Y. Hatano, D.R. Hatch, T. Haupt, J. Hawes, N.C. Hawkes, J. Hawkins, T. Hayashi, S. Hazael, S. Hazel, P. Heesterman, B. Heidbrink, W. Helou, O. Hemming, S.S. Henderson, R.B. Henriques, D. Hepple, J. Herfindal, G. Hermon, J. Hill, J.C. Hillesheim, K. Hizanidis, A. Hjalmarsson, A. Ho, J. Hobirk, O. Hoenen, C. Hogben, A. Hollingsworth, S. Hollis, E. Hollmann, M. Hölzl, B. Homan, M. Hook, D. Hopley, J. Horáček, D. Horsley, N. Horsten, A. Horton, L.D. Horton, L. Horvath, S. Hotchin, R. Howell, Z. Hu, A. Huber, V. Huber, T. Huddleston, G.T.A. Huijsmans, P. Huynh, A. Hynes, M. Iliasova, D. Imrie, M. Imríšek, J. Ingleby, P. Innocente, K. Insulander Björk, N. Isernia, I. Ivanova-Stanik, E. Ivings, S. Jablonski, S. Jachmich, T. Jackson, P. Jacquet, H. Järleblad, F. Jaulmes, J.Jenaro Rodriguez, I. Jepu, E. Joffrin, R. Johnson, T. Johnson, J. Johnston, C. Jones, G. Jones, L. Jones, N. Jones, T. Jones, A. Joyce, R. Juarez, M. Juvonen, P. Kalniņa, T. Kaltiaisenaho, J. Kaniewski, A. Kantor, A. Kappatou, J. Karhunen, D. Karkinsky, Yu Kashchuk, M. Kaufman, G. Kaveney, Ye.O. Kazakov, V. Kazantzidis, D.L. Keeling, R. Kelly, M. Kempenaars, C. Kennedy, D. Kennedy, J. Kent, K. Khan, E. Khilkevich, C. Kiefer, J. Kilpeläinen, C. Kim, Hyun-Tae Kim, S.H. Kim, D.B. King, R. King, D. Kinna, V.G. Kiptily, A. Kirjasuo, K.K. Kirov, A. Kirschner, T. kiviniemi, G. Kizane, M. Klas, C. Klepper, A. Klix, G. Kneale, M. Knight, P. Knight, R. Knights, S. Knipe, M. Knolker, S. Knott, M. Kocan, F. Köchl, I. Kodeli, Y. Kolesnichenko, Y. Kominis, M. Kong, V. Korovin, B. Kos, D. Kos, H.R. Koslowski, M. Kotschenreuther, M. Koubiti, E. Kowalska-Strzęciwilk, K. Koziol, A. Krasilnikov, V. Krasilnikov, M. Kresina, K. Krieger, N. Krishnan, A. Krivska, U. Kruezi, I. Książek, A.B. Kukushkin, H. Kumpulainen, T. Kurki-Suonio, H. Kurotaki, S. Kwak, O.J. Kwon, L. Laguardia, E. Lagzdina, A. Lahtinen, A. Laing, N. Lam, H.T. Lambertz, B. Lane, C. Lane, E.Lascas Neto, E. Łaszyńska, K.D. Lawson, A. Lazaros, E. Lazzaro, G. Learoyd, Chanyoung Lee, S.E. Lee, S. Leerink, T. Leeson, X. Lefebvre, H.J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, F. Leipold, I. Lengar, M. Lennholm, E. Leon Gutierrez, B. Lepiavko, J. Leppänen, E. Lerche, A. Lescinskis, J. Lewis, W. Leysen, L. Li, Y. Li, J. Likonen, Ch. Linsmeier, B. Lipschultz, X. Litaudon, E. Litherland-Smith, F. Liu, T. Loarer, A. Loarte, R. Lobel, B. Lomanowski, P.J. Lomas, J.M. López, R. Lorenzini, S. Loreti, U. Losada, V.P. Loschiavo, M. Loughlin, Z. Louka, J. Lovell, T. Lowe, C. Lowry, S. Lubbad, T. Luce, R. Lucock, A. Lukin, C. Luna, E.de la Luna, M. Lungaroni, C.P. Lungu, T. Lunt, V. Lutsenko, B. Lyons, A. Lyssoivan, M. Machielsen, E. Macusova, R. Mäenpää, C.F. Maggi, R. Maggiora, M. Magness, S. Mahesan, H. Maier, R. Maingi, K. Malinowski, P. Manas, P. Mantica, M.J. Mantsinen, J. Manyer, A. Manzanares, Ph. Maquet, G. Marceca, N. Marcenko, C. Marchetto, O. Marchuk, A. Mariani, G. Mariano, M. Marin, M. Marinelli, T. Markovič, D. Marocco, L. Marot, S. Marsden, J. Marsh, R. Marshall, L. Martellucci, A. Martin, A.J. Martin, R. Martone, S. Maruyama, M. Maslov, S. Masuzaki, S. Matejcik, M. Mattei, G.F. Matthews, D. Matveev, E. Matveeva, A. Mauriya, F. Maviglia, M. Mayer, M.-L. Mayoral, S. Mazzi, C. Mazzotta, R. McAdams, P.J. McCarthy, K.G. McClements, J. McClenaghan, P. McCullen, D.C. McDonald, D. McGuckin, D. McHugh, G. McIntyre, R. McKean, J. McKehon, B. McMillan, L. McNamee, A. McShee, A. Meakins, S. Medley, C.J. Meekes, K. Meghani, A.G. Meigs, G. Meisl, S. Meitner, S. Menmuir, K. Mergia, S. Merriman, Ph. Mertens, S. Meshchaninov, A. Messiaen, R. Michling, P. Middleton, D. Middleton-Gear, J. Mietelski, D. Milanesio, E. Milani, F. Militello, A.Militello Asp, J. Milnes, A. Milocco, G. Miloshevsky, C. Minghao, S. Minucci, I. Miron, M. Miyamoto, J. Mlynář, V. Moiseenko, P. Monaghan, I. Monakhov, T. Moody, S. Moon, R. Mooney, S. Moradi, J. Morales, R.B. Morales, S. Mordijck, L. Moreira, L. Morgan, F. Moro, J. Morris, K.-M. Morrison, L. Msero, D. Moulton, T. Mrowetz, T. Mundy, M. Muraglia, A. Murari, A. Muraro, N. Muthusonai, B. N’Konga, Yong-Su Na, F. Nabais, M. Naden, J. Naish, R. Naish, F. Napoli, E. Nardon, V. Naulin, M.F.F. Nave, I. Nedzelskiy, G. Nemtsev, V. Nesenevich, I. Nestoras, R. Neu, V.S. Neverov, S. Ng, M. Nicassio, A.H. Nielsen, D. Nina, D. Nishijima, C. Noble, C.R. Nobs, M. Nocente, D. Nodwell, K. Nordlund, H. Nordman, R. Normanton, J.M. Noterdaeme, S. Nowak, E. Nunn, H. Nyström, M. Oberparleiter, B. Obryk, J. O'Callaghan, T. Odupitan, H.J.C. Oliver, R. Olney, M. O’Mullane, J. Ongena, E. Organ, F. Orsitto, J. Orszagh, T. Osborne, R. Otin, T. Otsuka, A. Owen, Y. Oya, M. Oyaizu, R. Paccagnella, N. Pace, L.W. Packer, S. Paige, E. Pajuste, D. Palade, S.J.P. Pamela, N. Panadero, E. Panontin, A. Papadopoulos, G. Papp, P. Papp, V.V. Parail, C. Pardanaud, J. Parisi, F.Parra Diaz, A. Parsloe, M. Parsons, N. Parsons, M. Passeri, A. Patel, A. Pau, G. Pautasso, R. Pavlichenko, A. Pavone, E. Pawelec, C.Paz Soldan, A. Peacock, M. Pearce, E. Peluso, C. Penot, K. Pepperell, R. Pereira, T. Pereira, E.Perelli Cippo, P. Pereslavtsev, C. Perez von Thun, V. Pericoli, D. Perry, M. Peterka, P. Petersson, G. Petravich, N. Petrella, M. Peyman, M. Pillon, S. Pinches, G. Pintsuk, W. Pires de Sá, A. Pires dos Reis, C. Piron, L. Pionr, A. Pironti, R. Pitts, K.L. van de Plassche, N. Platt, V. Plyusnin, M. Podesta, G. Pokol, F.M. Poli, O.G. Pompilian, S. Popovichev, M. Poradziński, M.T. Porfiri, M. Porkolab, C. Porosnicu, M. Porton, G. Poulipoulis, I. Predebon, G. Prestopino, C. Price, D. Price, M. Price, D. Primetzhofer, P. Prior, G. Provatas, G. Pucella, P. Puglia, K. Purahoo, I. Pusztai, O. Putignano, T. Pütterich, A. Quercia, E. Rachlew, G. Radulescu, V. Radulovic, M. Rainford, P. Raj, G. Ralph, G. Ramogida, D. Rasmussen, J.J. Rasmussen, G. Rattá, S. Ratynskaia, M. Rebai, D. Réfy, R. Reichle, M. Reinke, D. Reiser, C. Reux, S. Reynolds, M.L. Richiusa, S. Richyal, D. Rigamonti, F.G. Rimini, J. Risner, M. Riva, J. Rivero-Rodriguez, C.M. Roach, R. Robins, S. Robinson, D. Robson, R. Rodionov, P. Rodrigues, M.Rodriguez Ramos, P. Rodriguez-Fernandez, F. Romanelli, M. Romanelli, S. Romanelli, J. Romazanov, R. Rossi, S. Rowe, D. Rowlands, M. Rubel, G. Rubinacci, G. Rubino, L. Ruchko, M. Ruiz, J.Ruiz Ruiz, C. Ruset, J. Rzadkiewicz, S. Saarelma, E. Safi, A. Sahlberg, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, I. Sanders, D. Sandiford, B. Santos, A. Santucci, K. Särkimäki, R. Sarwar, I. Sarychev, O. Sauter, P. Sauwan, N. Scapin, F. Schluck, K. Schmid, S. Schmuck, M. Schneider, P.A. Schneider, D. Schwörer, G. Scott, M. Scott, D. Scraggs, S. Scully, M. Segato, Jaemin Seo, G. Sergienko, M. Sertoli, S.E. Sharapov, A. Shaw, H. Sheikh, U. Sheikh, A. Shepherd, A. Shevelev, P. Shigin, K. Shinohara, S. Shiraiwa, D. Shiraki, M. Short, G. Sias, S.A. Silburn, A. Silva, C. Silva, J. Silva, D. Silvagni, D. Simfukwe, J. Simpson, D. Sinclair, S.K. Sipilä, A.C.C. Sips, P. Sirén, A. Sirinelli, H. Sjöstrand, N. Skinner, J. Slater, N. Smith, P. Smith, J. Snell, G. Snoep, L. Snoj, P. Snyder, S. Soare, E.R. Solano, V. Solokha, A. Somers, C. Sommariva, K. Soni, E. Sorokovoy, M. Sos, J. Sousa, C. Sozzi, S. Spagnolo, T. Spelzini, F. Spineanu, D. Spong, D. Sprada, S. Sridhar, C. Srinivasan, G. Stables, G. Staebler, I. Stamatelatos, Z. Stancar, P. Staniec, G. Stankūnas, M. Stead, E. Stefanikova, A. Stephen, J. Stephens, P. Stevenson, M. Stojanov, P. Strand, H.R. Strauss, S. Strikwerda, P. Ström, C.I. Stuart, W. Studholme, M. Subramani, E. Suchkov, S. Sumida, H.J. Sun, T.E. Susts, J. Svensson, J. Svoboda, R. Sweeney, D. Sytnykov, T. Szabolics, G. Szepesi, B. Tabia, T. Tadić, B. Tál, T. Tala, A. Tallargio, P. Tamain, H. Tan, K. Tanaka, W. Tang, M. Tardocchi, D. Taylor, A.S. Teimane, G. Telesca, N. Teplova, A. Teplukhina, D. Terentyev, A. Terra, D. Terranova, N. Terranova, D. Testa, E. Tholerus, J. Thomas, E. Thoren, A. Thorman, W. Tierens, R.A. Tinguely, A. Tipton, H. Todd, M. Tokitani, P. Tolias, M. Tomeš, A. Tookey, Y. Torikai, U. von Toussaint, P. Tsavalas, D. Tskhakaya, I. Turner, M. Turner, M.M. Turner, M. Turnyanskiy, G. Tvalashvili, S. Tyrrell, M. Tyshchenko, A. Uccello, V. Udintsev, G. Urbanczyk, A. Vadgama, D. Valcarcel, M. Valisa, P.Vallejos Olivares, O. Vallhagen, M. Valovič, D. Van Eester, J. Varje, S. Vartanian, T. Vasilopoulou, G. Vayakis, M. Vecsei, J. Vega, S. Ventre, G. Verdoolaege, C. Verona, G.Verona Rinati, E. Veshchev, N. Vianello, E. Viezzer, L. Vignitchouk, R. Vila, R. Villari, F. Villone, P. Vincenzi, I. Vinyar, B. Viola, A.J. Virtanen, A. Vitins, Z. Vizvary, G. Vlad, M. Vlad, P. Vondráček, P.de Vries, B. Wakeling, N.R. Walkden, M. Walker, R. Walker, M. Walsh, E. Wang, N. Wang, S. Warder, R. Warren, J. Waterhouse, C. Watts, T. Wauters, A. Weckmann, H.Wedderburn Maxwell, M. Weiland, H. Weisen, M. Weiszflog, P. Welch, N. Wendler, A. West, M. Wheatley, S. Wheeler, A. Whitehead, D. Whittaker, A. Widdowson, S. Wiesen, J. Wilkinson, J.C. Williams, D. Willoughby, I. Wilson, J. Wilson, T. Wilson, M. Wischmeier, P. Wise, G. Withenshaw, A. Withycombe, D. Witts, A. Wojcik-Gargula, E. Wolfrum, R. Wood, C. Woodley, R. Woodley, B. Woods, J. Wright, J.C. Wright, T. Xu, D. Yadikin, M. Yajima, Y. Yakovenko, Y. Yang, W. Yanling, V. Yanovskiy, I. Young, R. Young, R.J. Zabolockis, J. Zacks, R. Zagorski, F.S. Zaitsev, L. Zakharov, A. Zarins, D. Zarzoso Fernandez, K.-D. Zastrow, Y. Zayachuk, M. Zerbini, W. Zhang, Y. Zhou, M. Zlobinski, A. Zocco, A. Zohar, V. Zoita, S. Zoletnik, V.K. Zotta, I. Zoulias, W. Zwingmann, I. Zychor, VTT Technical Research Centre of Finland, Culham Science Centre, Princeton Plasma Physics Laboratory, Department of Applied Physics, Uppsala University, European Commission, Forschungszentrum Jülich, Universidade Lisboa, Fusion and Plasma Physics, University of Milan - Bicocca, General Atomics, ITER, University of Toyama, CEA, Oak Ridge National Laboratory, Technical University of Madrid, Swiss Federal Institute of Technology Lausanne, Dutch Institute for Fundamental Energy Research, Royal Military Academy, Seoul National University, Chalmers University of Technology, Max-Planck-Institut für Plasmaphysik, KTH Royal Institute of Technology, Aalto-yliopisto, Aalto University, JET Contributor, Mailloux, Joelle, Chiariello, Andrea, Martone, Raffaele, Formisano, Alessandro, Mattei, Massimiliano, Faculdade de Engenharia, Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Barcelona Supercomputing Center, Albanese, Raffaele, Ambrosino, Giuseppe, Ambrosino, Roberto, Coccorese, Vincenzo, De Tommasi, Gianmaria, Fresa, Raffaele, Pironti, Alfredo, Quercia, Antonio, Rubinacci, Guglielmo, Et, Al, Mailloux, J, Abid, N, Abraham, K, Abreu, P, Adabonyan, O, Adrich, P, Afanasev, V, Afzal, M, Ahlgren, T, Aho-Mantila, L, Aiba, N, Airila, M, Akhtar, M, Albanese, R, Alderson-Martin, M, Alegre, D, Aleiferis, S, Aleksa, A, Alekseev, A, Alessi, E, Aleynikov, P, Algualcil, J, Ali, M, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amosov, V, Sunden, E, Andrew, P, Angelini, B, Angioni, C, Antoniou, I, Appel, L, Appelbee, C, Aria, S, Ariola, M, Artaserse, G, Arter, W, Artigues, V, Asakura, N, Ash, A, Ashikawa, N, Aslanyan, V, Astrain, M, Asztalos, O, Auld, D, Auriemma, F, Austin, Y, Avotina, L, Aymerich, E, Baciero, A, Bairaktaris, F, Balbin, J, Balbinot, L, Balboa, I, Balden, M, Balshaw, C, Balshaw, N, Bandaru, V, Banks, J, Baranov, Y, Barcellona, C, Barnard, A, Barnard, M, Barnsley, R, Barth, A, Baruzzo, M, Barwell, S, Bassan, M, Batista, A, Batistoni, P, Baumane, L, Bauvir, B, Baylor, L, Beaumont, P, Beckett, D, Begolli, A, Beidler, M, Bekris, N, Beldishevski, M, Belli, E, Belli, F, Belonohy, E, Ben Yaala, M, Benayas, J, Bentley, J, Bergsaker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Betar, H, Beurskens, M, Bickerton, S, Bieg, B, Bielecki, J, Bierwage, A, Biewer, T, Bilato, R, Bilkova, P, Birkenmeier, G, Bishop, H, Bizarro, J, Blackburn, J, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bohm, P, Bohm, T, Bolshakova, I, Bolzonella, T, Bonanomi, N, Bonfiglio, D, Bonnin, X, Bonofiglo, P, Boocock, S, Booth, A, Booth, J, Borba, D, Borodin, D, Borodkina, I, Boulbe, C, Bourdelle, C, Bowden, M, Boyd, K, Mihalic, I, Bradnam, S, Braic, V, Brandt, L, Bravanec, R, Breizman, B, Brett, A, Brezinsek, S, Brix, M, Bromley, K, Brown, B, Brunetti, D, Buckingham, R, Buckley, M, Budny, R, Buermans, J, Bufferand, H, Buratti, P, Burgess, A, Buscarino, A, Busse, A, Butcher, D, de la Cal, E, Calabro, G, Calacci, L, Calado, R, Camenen, Y, Canal, G, Cannas, B, Cappelli, M, Carcangiu, S, Card, P, Cardinali, A, Carman, P, Carnevale, D, Carr, M, Carralero, D, Carraro, L, Carvalho, I, Carvalho, P, Casiraghi, I, Casson, F, Castaldo, C, Catalan, J, Catarino, N, Causa, F, Cavedon, M, Cecconello, M, Challis, C, Chamberlain, B, Chang, C, Chankin, A, Chapman, B, Chernyshova, M, Chiariello, A, Chmielewski, P, Chomiczewska, A, Chone, L, Ciraolo, G, Ciric, D, Clark, M, Clarkson, R, Clements, C, Cleverly, M, Coad, J, Coates, P, Cobalt, A, Coccorese, V, Coelho, R, Coenen, J, Coffey, I, Colangeli, A, Colas, L, Collins, C, Collins, J, Collins, S, Conka, D, Conroy, S, Conway, B, Conway, N, Coombs, D, Cooper, P, Cooper, S, Corradino, C, Corrigan, G, Coster, D, Cox, P, Craciunescu, T, Cramp, S, Crapper, C, Craven, D, Craven, R, Esposito, M, Croci, G, Croft, D, Croitoru, A, Crombe, K, Cronin, T, Cruz, N, Crystal, C, Cseh, G, Cufar, A, Cullen, A, Curuia, M, Czarski, T, Dabirikhah, H, Dal Molin, A, Dale, E, Dalgliesh, P, Dalley, S, Dankowski, J, David, P, Davies, A, Davies, S, Davis, G, Dawson, K, Dawson, S, Day, I, De Bock, M, De Temmerman, G, De Tommasi, G, Deakin, K, Deane, J, Dejarnac, R, Del Sarto, D, Delabie, E, Del-Castillo-Negrete, D, Dempsey, A, Dendy, R, Devynck, P, Di Siena, A, Di Troia, C, Dickson, T, Dinca, P, Dittmar, T, Dobrashian, J, Doerner, R, Donne, A, Dorling, S, Dormido-Canto, S, Douai, D, Dowson, S, Doyle, R, Dreval, M, Drewelow, P, Drews, P, Drummond, G, Duckworth, P, Dudding, H, Dumont, R, Dumortier, P, Dunai, D, Dunatov, T, Dunne, M, Durodie, F, Dux, R, Dvornova, A, Eastham, R, Edwards, J, Eich, T, Eichorn, A, Eidietis, N, Eksaeva, A, El Haroun, H, Ellwood, G, Elsmore, C, Embreus, O, Emery, S, Ericsson, G, Eriksson, B, Eriksson, F, Eriksson, J, Eriksson, L, Ertmer, S, Esquembri, S, Esquisabel, A, Estrada, T, Evans, G, Evans, S, Fable, E, Fagan, D, Faitsch, M, Falessi, M, Fanni, A, Farahani, A, Farquhar, I, Fasoli, A, Faugeras, B, Fazinic, S, Felici, F, Felton, R, Fernandes, A, Fernandes, H, Ferrand, J, Ferreira, D, Ferreira, J, Ferro, G, Fessey, J, Ficker, O, Field, A, Figueiredo, A, Figueiredo, J, Fil, A, Fil, N, Finburg, P, Fiorucci, D, Fischer, U, Fishpool, G, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Flinders, K, Foley, S, Fonnesu, N, Fontana, M, Fontdecaba, J, Forbes, S, Formisano, A, Fornal, T, Fortuna, L, Fortuna-Zalesna, E, Fortune, M, Fowler, C, Fransson, E, Frassinetti, L, Freisinger, M, Fresa, R, Fridstrom, R, Frigione, D, Fulop, T, Furseman, M, Fusco, V, Futatani, S, Gadariya, D, Gal, K, Galassi, D, Galazka, K, Galeani, S, Gallart, D, Galvao, R, Gao, Y, Garcia, J, Garcia-Munoz, M, Gardener, M, Garzotti, L, Gaspar, J, Gatto, R, Gaudio, P, Gear, D, Gebhart, T, Gee, S, Gelfusa, M, George, R, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Gherendi, M, Ghezzi, F, Giacalone, J, Giacomelli, L, Giacometti, G, Gibson, C, Gibson, K, Gil, L, Gillgren, A, Gin, D, Giovannozzi, E, Giroud, C, Glen, R, Gloggler, S, Goff, J, Gohil, P, Goloborodko, V, Gomes, R, Goncalves, B, Goniche, M, Goodyear, A, Gore, S, Gorini, G, Gorler, T, Gotts, N, Goulding, R, Gow, E, Graham, B, Graves, J, Greuner, H, Grierson, B, Griffiths, J, Griph, S, Grist, D, Gromelski, W, Groth, M, Grove, R, Gruca, M, Guard, D, Gupta, N, Gurl, C, Gusarov, A, Hackett, L, Hacquin, S, Hager, R, Hagg, L, Hakola, A, Halitovs, M, Hall, S, Hallworth-Cook, S, Ham, C, Hamaguchi, D, Hamed, M, Hamlyn-Harris, C, Hammond, K, Harford, E, Harrison, J, Harting, D, Hatano, Y, Hatch, D, Haupt, T, Hawes, J, Hawkes, N, Hawkins, J, Hayashi, T, Hazael, S, Hazel, S, Heesterman, P, Heidbrink, B, Helou, W, Hemming, O, Henderson, S, Henriques, R, Hepple, D, Herfindal, J, Hermon, G, Hill, J, Hillesheim, J, Hizanidis, K, Hjalmarsson, A, Ho, A, Hobirk, J, Hoenen, O, Hogben, C, Hollingsworth, A, Hollis, S, Hollmann, E, Holzl, M, Homan, B, Hook, M, Hopley, D, Horsley, D, Horsten, N, Horton, A, Horton, L, Horvath, L, Hotchin, S, Howell, R, Hu, Z, Huber, A, Huber, V, Huddleston, T, Huijsmans, G, Huynh, P, Hynes, A, Iliasova, M, Imrie, D, Imrisek, M, Ingleby, J, Innocente, P, Bjork, K, Isernia, N, Ivanova-Stanik, I, Ivings, E, Jablonski, S, Jachmich, S, Jackson, T, Jacquet, P, Jarleblad, H, Jaulmes, F, Rodriguez, J, Jepu, I, Joffrin, E, Johnson, R, Johnson, T, Johnston, J, Jones, C, Jones, G, Jones, L, Jones, N, Jones, T, Joyce, A, Juarez, R, Juvonen, M, Kaltiaisenaho, T, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Kashchuk, Y, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, D, Kelly, R, Kempenaars, M, Kennedy, C, Kennedy, D, Kent, J, Khan, K, Khilkevich, E, Kiefer, C, Kilpelainen, J, Kim, C, Kim, H, Kim, S, King, D, King, R, Kinna, D, Kiptily, V, Kirjasuo, A, Kirov, K, Kirschner, A, Kiviniemi, T, Kizane, G, Klas, M, Klepper, C, Klix, A, Kneale, G, Knight, M, Knight, P, Knights, R, Knipe, S, Knolker, M, Knott, S, Kocan, M, Kochl, F, Kodeli, I, Kolesnichenko, Y, Kominis, Y, Kong, M, Korovin, V, Kos, B, Kos, D, Koslowski, H, Kotschenreuther, M, Koubiti, M, Koziol, K, Krasilnikov, A, Krasilnikov, V, Kresina, M, Krieger, K, Krishnan, N, Krivska, A, Kruezi, U, Kukushkin, A, Kumpulainen, H, Kurki-Suonio, T, Kurotaki, H, Kwak, S, Kwon, O, Laguardia, L, Lagzdina, E, Lahtinen, A, Laing, A, Lam, N, Lambertz, H, Lane, B, Lane, C, Neto, E, Lawson, K, Lazaros, A, Lazzaro, E, Learoyd, G, Lee, C, Lee, S, Leerink, S, Leeson, T, Lefebvre, X, Leggate, H, Lehmann, J, Lehnen, M, Leichtle, D, Leipold, F, Lengar, I, Lennholm, M, Gutierrez, E, Lepiavko, B, Leppanen, J, Lerche, E, Lescinskis, A, Lewis, J, Leysen, W, Li, L, Li, Y, Likonen, J, Linsmeier, C, Lipschultz, B, Litaudon, X, Litherland-Smith, E, Liu, F, Loarer, T, Loarte, A, Lobel, R, Lomanowski, B, Lomas, P, Lopez, J, Lorenzini, R, Loreti, S, Losada, U, Loschiavo, V, Loughlin, M, Louka, Z, Lovell, J, Lowe, T, Lowry, C, Lubbad, S, Luce, T, Lucock, R, Lukin, A, Luna, C, de la Luna, E, Lungaroni, M, Lungu, C, Lunt, T, Lutsenko, V, Lyons, B, Lyssoivan, A, Machielsen, M, Macusova, E, Maenpaa, R, Maggi, C, Maggiora, R, Magness, M, Mahesan, S, Maier, H, Maingi, R, Malinowski, K, Manas, P, Mantica, P, Mantsinen, M, Manyer, J, Manzanares, A, Maquet, P, Marceca, G, Marcenko, N, Marchetto, C, Marchuk, O, Mariani, A, Mariano, G, Marin, M, Marinelli, M, Markovic, T, Marocco, D, Marot, L, Marsden, S, Marsh, J, Marshall, R, Martellucci, L, Martin, A, Martone, R, Maruyama, S, Maslov, M, Masuzaki, S, Matejcik, S, Mattei, M, Matthews, G, Matveev, D, Matveeva, E, Mauriya, A, Maviglia, F, Mayer, M, Mayoral, M, Mazzi, S, Mazzotta, C, Mcadams, R, Mccarthy, P, Mcclements, K, Mcclenaghan, J, Mccullen, P, Mcdonald, D, Mcguckin, D, Mchugh, D, Mcintyre, G, Mckean, R, Mckehon, J, Mcmillan, B, Mcnamee, L, Mcshee, A, Meakins, A, Medley, S, Meekes, C, Meghani, K, Meigs, A, Meisl, G, Meitner, S, Menmuir, S, Mergia, K, Merriman, S, Mertens, P, Meshchaninov, S, Messiaen, A, Michling, R, Middleton, P, Middleton-Gear, D, Mietelski, J, Milanesio, D, Milani, E, Militello, F, Asp, A, Milnes, J, Milocco, A, Miloshevsky, G, Minghao, C, Minucci, S, Miron, I, Miyamoto, M, Mlynar, J, Moiseenko, V, Monaghan, P, Monakhov, I, Moody, T, Moon, S, Mooney, R, Moradi, S, Morales, J, Morales, R, Mordijck, S, Moreira, L, Morgan, L, Moro, F, Morris, J, Morrison, K, Msero, L, Moulton, D, Mrowetz, T, Mundy, T, Muraglia, M, Murari, A, Muraro, A, Muthusonai, N, Na, Y, Nabais, F, Naden, M, Naish, J, Naish, R, Napoli, F, Nardon, E, Naulin, V, Nave, M, Nedzelskiy, I, Nemtsev, G, Nesenevich, V, Nestoras, I, Neu, R, Neverov, V, Ng, S, Nicassio, M, Nielsen, A, Nina, D, Nishijima, D, Noble, C, Nobs, C, Nocente, M, Nodwell, D, Nordlund, K, Nordman, H, Normanton, R, Noterdaeme, J, Nowak, S, Nunn, E, Nystrom, H, Oberparleiter, M, Obryk, B, O'Callaghan, J, Odupitan, T, Oliver, H, Olney, R, O'Mullane, M, Ongena, J, Organ, E, Orsitto, F, Orszagh, J, Osborne, T, Otin, R, Otsuka, T, Owen, A, Oya, Y, Oyaizu, M, Paccagnella, R, Pace, N, Packer, L, Paige, S, Pajuste, E, Palade, D, Pamela, S, Panadero, N, Panontin, E, Papadopoulos, A, Papp, G, Papp, P, Parail, V, Pardanaud, C, Parisi, J, Diaz, F, Parsloe, A, Parsons, M, Parsons, N, Passeri, M, Patel, A, Pau, A, Pautasso, G, Pavlichenko, R, Pavone, A, Pawelec, E, Soldan, C, Peacock, A, Pearce, M, Peluso, E, Penot, C, Pepperell, K, Pereira, R, Pereira, T, Cippo, E, Pereslavtsev, P, von Thun, C, Pericoli, V, Perry, D, Peterka, M, Petersson, P, Petravich, G, Petrella, N, Peyman, M, Pillon, M, Pinches, S, Pintsuk, G, de Sa, W, dos Reis, A, Piron, C, Pionr, L, Pironti, A, Pitts, R, van de Plassche, K, Platt, N, Plyusnin, V, Podesta, M, Pokol, G, Poli, F, Pompilian, O, Popovichev, S, Poradzinski, M, Porfiri, M, Porkolab, M, Porosnicu, C, Porton, M, Poulipoulis, G, Predebon, I, Prestopino, G, Price, C, Price, D, Price, M, Primetzhofer, D, Prior, P, Provatas, G, Pucella, G, Puglia, P, Purahoo, K, Pusztai, I, Putignano, O, Putterich, T, Quercia, A, Rachlew, E, Radulescu, G, Radulovic, V, Rainford, M, Raj, P, Ralph, G, Ramogida, G, Rasmussen, D, Rasmussen, J, Ratta, G, Ratynskaia, S, Rebai, M, Refy, D, Reichle, R, Reinke, M, Reiser, D, Reux, C, Reynolds, S, Richiusa, M, Richyal, S, Rigamonti, D, Rimini, F, Risner, J, Riva, M, Rivero-Rodriguez, J, Roach, C, Robins, R, Robinson, S, Robson, D, Rodionov, R, Rodrigues, P, Ramos, M, Rodriguez-Fernandez, P, Romanelli, F, Romanelli, M, Romanelli, S, Romazanov, J, Rossi, R, Rowe, S, Rowlands, D, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruiz, M, Ruiz, J, Ruset, C, Rzadkiewicz, J, Saarelma, S, Safi, E, Sahlberg, A, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Sanders, I, Sandiford, D, Santos, B, Santucci, A, Sarkimaki, K, Sarwar, R, Sarychev, I, Sauter, O, Sauwan, P, Scapin, N, Schluck, F, Schmid, K, Schmuck, S, Schneider, M, Schneider, P, Schworer, D, Scott, G, Scott, M, Scraggs, D, Scully, S, Segato, M, Seo, J, Sergienko, G, Sertoli, M, Sharapov, S, Shaw, A, Sheikh, H, Sheikh, U, Shepherd, A, Shevelev, A, Shigin, P, Shinohara, K, Shiraiwa, S, Shiraki, D, Short, M, Sias, G, Silburn, S, Silva, A, Silva, C, Silva, J, Silvagni, D, Simfukwe, D, Simpson, J, Sinclair, D, Sipila, S, Sips, A, Siren, P, Sirinelli, A, Sjostrand, H, Skinner, N, Slater, J, Smith, N, Smith, P, Snell, J, Snoep, G, Snoj, L, Snyder, P, Soare, S, Solano, E, Solokha, V, Somers, A, Sommariva, C, Soni, K, Sorokovoy, E, Sos, M, Sousa, J, Sozzi, C, Spagnolo, S, Spelzini, T, Spineanu, F, Spong, D, Sprada, D, Sridhar, S, Srinivasan, C, Stables, G, Staebler, G, Stamatelatos, I, Stancar, Z, Staniec, P, Stankunas, G, Stead, M, Stefanikova, E, Stephen, A, Stephens, J, Stevenson, P, Stojanov, M, Strand, P, Strauss, H, Strikwerda, S, Strom, P, Stuart, C, Studholme, W, Subramani, M, Suchkov, E, Sumida, S, Sun, H, Susts, T, Svensson, J, Svoboda, J, Sweeney, R, Sytnykov, D, Szabolics, T, Szepesi, G, Tabia, B, Tadic, T, Tal, B, Tala, T, Tallargio, A, Tamain, P, Tan, H, Tanaka, K, Tang, W, Tardocchi, M, Taylor, D, Teimane, A, Telesca, G, Teplova, N, Teplukhina, A, Terentyev, D, Terra, A, Terranova, D, Terranova, N, Testa, D, Tholerus, E, Thomas, J, Thoren, E, Thorman, A, Tierens, W, Tinguely, R, Tipton, A, Todd, H, Tokitani, M, Tolias, P, Tomes, M, Tookey, A, Torikai, Y, von Toussaint, U, Tsavalas, P, Tskhakaya, D, Turner, I, Turner, M, Turnyanskiy, M, Tvalashvili, G, Tyrrell, S, Tyshchenko, M, Uccello, A, Udintsev, V, Urbanczyk, G, Vadgama, A, Valcarcel, D, Valisa, M, Olivares, P, Vallhagen, O, Van Eester, D, Varje, J, Vartanian, S, Vasilopoulou, T, Vayakis, G, Vecsei, M, Vega, J, Ventre, S, Verdoolaege, G, Verona, C, Rinati, G, Veshchev, E, Vianello, N, Viezzer, E, Vignitchouk, L, Vila, R, Villari, R, Villone, F, Vincenzi, P, Vinyar, I, Viola, B, Virtanen, A, Vitins, A, Vizvary, Z, Vlad, G, Vlad, M, Vondracek, P, de Vries, P, Wakeling, B, Walkden, N, Walker, M, Walker, R, Walsh, M, Wang, E, Wang, N, Warder, S, Warren, R, Waterhouse, J, Watts, C, Wauters, T, Weckmann, A, Maxwell, H, Weiland, M, Weisen, H, Weiszflog, M, Welch, P, Wendler, N, West, A, Wheatley, M, Wheeler, S, Whitehead, A, Whittaker, D, Widdowson, A, Wiesen, S, Wilkinson, J, Williams, J, Willoughby, D, Wilson, I, Wilson, J, Wilson, T, Wischmeier, M, Wise, P, Withenshaw, G, Withycombe, A, Witts, D, Wojcik-Gargula, A, Wolfrum, E, Wood, R, Woodley, C, Woodley, R, Woods, B, Wright, J, Xu, T, Yadikin, D, Yajima, M, Yakovenko, Y, Yang, Y, Yanling, W, Yanovskiy, V, Young, I, Young, R, Zabolockis, R, Zacks, J, Zagorski, R, Zaitsev, F, Zakharov, L, Zarins, A, Fernandez, D, Zastrow, K, Zayachuk, Y, Zerbini, M, Zhang, W, Zhou, Y, Zlobinski, M, Zocco, A, Zohar, A, Zoita, V, Zoletnik, S, Zotta, V, Zoulias, I, Zwingmann, W, and Zychor, I
- Subjects
Technology ,TOKAMAKS ,PLASMAS ,overview ,CONFINEMENT ,plasma facing components (PFC) ,ILW ,tritium operations ,d-t preparation ,deuterium ,D–T preparation ,nuclear technology ,JET with ITER-like wall ,isotope ,Física::Física de fluids::Física de plasmes [Àrees temàtiques de la UPC] ,Settore FIS/01 ,GAS HANDLING-SYSTEM ,JET ,Overview ,ITER-like wall (ILW) ,D-T preparation ,energetic particles ,scenario development ,Shattered Pellet Injection (SPI) ,plasma-wall interactions (PWI) ,tritium ,Physics ,Settore ING-IND/18 - Fisica dei Reattori Nucleari ,shutdown dose-rate ,gas handling-system ,Condensed Matter Physics ,simulation ,Fusion, Plasma and Space Physics ,ilw ,confinement ,Physical Sciences ,SIMULATION ,JET with ITER-like wallisotope ,ddc:620 ,performance ,plasma facing components (pfc) ,Nuclear and High Energy Physics ,DEUTERIUM ,jet with iter-like wall ,Fusion, plasma och rymdfysik ,Physics, Fluids & Plasmas ,BERYLLIUM ,divertor ,TRITIUM ,Science & Technology ,Reactors de fusió ,tritium operation ,Nuclear energy ,PERFORMANCE ,beryllium ,SHUTDOWN DOSE-RATE ,Fusion reactors ,Physics and Astronomy ,JET programme ,Energia nuclear ,DIVERTOR ,ddc:600 - Abstract
The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (a) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. Peer Reviewed Article signat per 1223 autors/autores: J. Mailloux1, N. Abid1, K. Abraham1, P. Abreu2, O. Adabonyan1, P. Adrich3, V. Afanasev4, M. Afzal1, T. Ahlgren5, L. Aho-Mantila6, N. Aiba7, M. Airila6, M. Akhtar1, R. Albanese8, M. Alderson-Martin1, D. Alegre9, S. Aleiferis10, A. Aleksa1, A.G. Alekseev11, E. Alessi12, P. Aleynikov13, J. Algualcil14, M. Ali1, M. Allinson1, B. Alper1, E. Alves2, G. Ambrosino8, R. Ambrosino8, V. Amosov15, E.Andersson Sunden16, P. Andrew13, B.M. Angelini17, C. Angioni18, I. Antoniou1, L.C. Appel1, C. Appelbee1, S. Aria1, M. Ariola8, G. Artaserse17, W. Arter1, V. Artigues18, N. Asakura7, A. Ash1, N. Ashikawa19, V. Aslanyan20, M. Astrain21, O. Asztalos22, D. Auld1, F. Auriemma23, Y. Austin1, L. Avotina24, E. Aymerich25, A. Baciero9, F. Bairaktaris26, J. Balbin27, L. Balbinot23, I. Balboa1, M. Balden18, C. Balshaw1, N. Balshaw1, V.K. Bandaru18, J. Banks1, Yu.F. Baranov1, C. Barcellona28, A. Barnard1, M. Barnard1, R. Barnsley13, A. Barth1, M. Baruzzo17, S. Barwell1, M. Bassan13, A. Batista2, P. Batistoni17, L. Baumane24, B. Bauvir13, L. Baylor29, P.S. Beaumont1, D. Beckett1, A. Begolli1, M. Beidler29, N. Bekris30,31, M. Beldishevski1, E. Belli32, F. Belli17, É. Belonohy1, M. Ben Yaala33, J. Benayas1, J. Bentley1, H. Bergsåker34, J. Bernardo2, M. Bernert18, M. Berry1, L. Bertalot13, H. Betar35, M. Beurskens36, S. Bickerton1, B. Bieg37, J. Bielecki38, A. Bierwage7, T. Biewer29, R. Bilato18, P. Bílková39, G. Birkenmeier18, H. Bishop1, J.P.S. Bizarro2, J. Blackburn1, P. Blanchard40, P. Blatchford1, V. Bobkov18, A. Boboc1, P. Bohm39, T. Bohm41, I. Bolshakova42, T. Bolzonella23, N. Bonanomi18, D. Bonfiglio23, X. Bonnin13, P. Bonofiglo43, S. Boocock1, A. Booth1, J. Booth1, D. Borba2,30, D. Borodin44, I. Borodkina39,44, C. Boulbe45, C. Bourdelle27, M. Bowden1, K. Boyd1, I.Bozicevic Mihalic46, S.C. Bradnam1, V. Braic47, L. Brandt48, R. Bravanec49, B. Breizman50, A. Brett1, S. Brezinsek44, M. Brix1, K. Bromley1, B. Brown1, D. Brunetti1,12, R. Buckingham1, M. Buckley1, R. Budny, J. Buermans51, H. Bufferand27, P. Buratti17, A. Burgess1, A. Buscarino28, A. Busse1, D. Butcher1, E.de la Cal9, G. Calabrò52, L. Calacci53, R. Calado2, Y. Camenen54, G. Canal55, B. Cannas25, M. Cappelli17, S. Carcangiu25, P. Card1, A. Cardinali17, P. Carman1, D. Carnevale53, M. Carr1, D. Carralero9, L. Carraro23, I.S. Carvalho2, P. Carvalho2, I. Casiraghi56, F.J. Casson1, C. Castaldo17, J.P. Catalan14, N. Catarino2, F. Causa12, M. Cavedon18, M. Cecconello16, C.D. Challis1, B. Chamberlain1, C.S. Chang43, A. Chankin18, B. Chapman1,57, M. Chernyshova58, A. Chiariello8, P. Chmielewski58, A. Chomiczewska58, L. Chone59, G. Ciraolo27, D. Ciric1, J. Citrin60, Ł. Ciupinski61, M. Clark1, R. Clarkson1, C. Clements1, M. Cleverly1, J.P. Coad1, P. Coates1, A. Cobalt1, V. Coccorese8, R. Coelho2, J.W. Coenen44, I.H. Coffey62, A. Colangeli17, L. Colas27, C. Collins29, J. Collins1, S. Collins1, D. Conka24, S. Conroy16, B. Conway1, N.J. Conway1, D. Coombs1, P. Cooper1, S. Cooper1, C. Corradino28, G. Corrigan1, D. Coster18, P. Cox1, T. Craciunescu63, S. Cramp1, C. Crapper1, D. Craven1, R. Craven1, M.Crialesi Esposito48, G. Croci56, D. Croft1, A. Croitoru63, K. Crombe51,64, T. Cronin1, N. Cruz2, C. Crystal32, G. Cseh22, A. Cufar65, A. Cullen1, M. Curuia66, T. Czarski58, H. Dabirikhah1, A.Dal Molin56, E. Dale1, P. Dalgliesh1, S. Dalley1, J. Dankowski38, P. David18, A. Davies1, S. Davies1, G. Davis1, K. Dawson1, S. Dawson1, I.E. Day1, M. De Bock13, G. De Temmerman13, G. De Tommasi8, K. Deakin1, J. Deane1, R. Dejarnac39, D. Del Sarto35, E. Delabie29, D. Del-Castillo-Negrete29, A. Dempsey67, R.O. Dendy1,57, P. Devynck27, A. Di Siena18, C. Di Troia17, T. Dickson1, P. Dinca63, T. Dittmar44, J. Dobrashian1, R.P. Doerner68, A.J.H. Donne´69, S. Dorling1, S. Dormido-Canto70, D. Douai27, S. Dowson1, R. Doyle67, M. Dreval71, P. Drewelow36, P. Drews44, G. Drummond1, Ph. Duckworth13, H. Dudding1,72, R. Dumont27, P. Dumortier51, D. Dunai22, T. Dunatov46, M. Dunne18, I. Duran39, F. Durodie51, R. Dux18, A. Dvornova27, R. Eastham1, J. Edwards1, Th. Eich18, A. Eichorn1, N. Eidietis32, A. Eksaeva44, H. El Haroun1, G. Ellwood13, C. Elsmore1, O. Embreus73, S. Emery1, G. Ericsson16, B. Eriksson16, F. Eriksson74, J. Eriksson16, L.G. Eriksson75, S. Ertmer44, S. Esquembri21, A.L. Esquisabel76, T. Estrada9, G. Evans1, S. Evans1, E. Fable18, D. Fagan1, M. Faitsch18, M. Falessi17, A. Fanni25, A. Farahani1, I. Farquhar1, A. Fasoli40, B. Faugeras45, S. Fazinic46, F. Felici40, R. Felton1, A. Fernandes2, H. Fernandes2, J. Ferrand1, D.R. Ferreira2, J. Ferreira2, G. Ferrò53, J. Fessey1, O. Ficker39, A.R. Field1, A. Figueiredo2, J. Figueiredo2,30, A. Fil1, N. Fil1,20, P. Finburg1, D. Fiorucci23, U. Fischer31, G. Fishpool1, L. Fittill1, M. Fitzgerald1, D. Flammini17, J. Flanagan1, K. Flinders1, S. Foley1, N. Fonnesu17, M. Fontana40, J.M. Fontdecaba9, S. Forbes1, A. Formisano8, T. Fornal58, L. Fortuna28, E. Fortuna-Zalesna61, M. Fortune1, C. Fowler1, E. Fransson74, L. Frassinetti34, M. Freisinger44, R. Fresa8, R. Fridström34, D. Frigione53, T. Fülöp73, M. Furseman1, V. Fusco24, S. Futatani17, D. Gadariya77, K. Gál69, D. Galassi40, K. Gałazka58, S. Galeani53, D. Gallart78, R. Galvao55, Y. Gao44, J. Garcia27, M. García-Muñoz79, M. Gardener1, L. Garzotti1, J. Gaspar80, R. Gatto81, P. Gaudio53, D. Gear1, T. Gebhart29, S. Gee1, M. Gelfusa53, R. George1, S.N. Gerasimov1, G. Gervasini12, M. Gethins1, Z. Ghani1, M. Gherendi63, F. Ghezzi12, J.C. Giacalone27, L. Giacomelli12, G. Giacometti54, C. Gibson1, K.J. Gibson72, L. Gil2, A. Gillgren74, D. Gin4, E. Giovannozzi17, C. Giroud1, R. Glen1, S. Glöggler18, J. Goff1, P. Gohil32, V. Goloborodko82, R. Gomes2, B. Gonçalves2, M. Goniche27, A. Goodyear1, S. Gore1, G. Gorini56, T. Görler18, N. Gotts1, R. Goulding43, E. Gow1, B. Graham1, J.P. Graves40, H. Greuner18, B. Grierson43, J. Griffiths1, S. Griph1, D. Grist1, W. Gromelski58, M. Groth59, R. Grove29, M. Gruca58, D. Guard1, N. Gupta1, C. Gurl1, A. Gusarov83, L. Hackett1, S. Hacquin27,30, R. Hager43, L. Hägg16, A. Hakola6, M. Halitovs24, S. Hall1, S.A. Hall1, S. Hallworth-Cook1, C.J. Ham1, D. Hamaguchi7, M. Hamed27, C. Hamlyn-Harris1, K. Hammond1, E. Harford1, J.R. Harrison1, D. Harting1, Y. Hatano84, D.R. Hatch50, T. Haupt1, J. Hawes1, N.C. Hawkes1, J. Hawkins1, T. Hayashi7, S. Hazael1, S. Hazel1, P. Heesterman1, B. Heidbrink85, W. Helou13, O. Hemming1, S.S. Henderson1, R.B. Henriques2, D. Hepple1, J. Herfindal29, G. Hermon1, J. Hill1, J.C. Hillesheim1, K. Hizanidis26, A. Hjalmarsson16, A. Ho60, J. Hobirk18, O. Hoenen13, C. Hogben1, A. Hollingsworth1, S. Hollis1, E. Hollmann68, M. Hölzl18, B. Homan45, M. Hook1, D. Hopley1, J. Horácek39, D. Horsley1, N. Horsten59, A. Horton1, L.D. Horton30,40, L. Horvath1,72, S. Hotchin1, R. Howell1, Z. Hu56, A. Huber44, V. Huber44, T. Huddleston1, G.T.A. Huijsmans13, P. Huynh27, A. Hynes1, M. Iliasova4, D. Imrie1, M. Imrísek39, J. Ingleby1, P. Innocente23, K. Insulander Björk73, N. Isernia8, I. Ivanova-Stanik58, E. Ivings1, S. Jablonski58, S. Jachmich13,30,51, T. Jackson1, P. Jacquet1, H. Järleblad86, F. Jaulmes39, J.Jenaro Rodriguez1, I. Jepu63, E. Joffrin27, R. Johnson1, T. Johnson34, J. Johnston1, C. Jones1, G. Jones1, L. Jones1, N. Jones1, T. Jones1, A. Joyce1, R. Juarez14, M. Juvonen1, P. Kalnin¸ a24, T. Kaltiaisenaho6, J. Kaniewski1, A. Kantor1, A. Kappatou18, J. Karhunen5, D. Karkinsky1, Yu Kashchuk87, M. Kaufman29, G. Kaveney1, Ye.O. Kazakov51, V. Kazantzidis26, D.L. Keeling1, R. Kelly1, M. Kempenaars13, C. Kennedy1, D. Kennedy1, J. Kent1, K. Khan1, E. Khilkevich4, C. Kiefer18, J. Kilpeläinen59, C. Kim32, Hyun-Tae Kim1,30, S.H. Kim13, D.B. King1, R. King1, D. Kinna1, V.G. Kiptily1, A. Kirjasuo6, K.K. Kirov1, A. Kirschner44, T. kiviniemi59, G. Kizane24, M. Klas88, C. Klepper29, A. Klix31, G. Kneale1, M. Knight1, P. Knight1, R. Knights1, S. Knipe1, M. Knolker32, S. Knott89, M. Kocan13, F. Köchl1, I. Kodeli65, Y. Kolesnichenko82, Y. Kominis26, M. Kong1, V. Korovin71, B. Kos65, D. Kos1, H.R. Koslowski44, M. Kotschenreuther50, M. Koubiti54, E. Kowalska-Strzeciwilk ˛ 58, K. Koziol3, A. Krasilnikov87, V. Krasilnikov13,15, M. Kresina1,27, K. Krieger18, N. Krishnan1, A. Krivska51, U. Kruezi13, I. Ksia˛zek ˙ 90, A.B. Kukushkin11, H. Kumpulainen59, T. Kurki-Suonio59, H. Kurotaki7, S. Kwak36, O.J. Kwon91, L. Laguardia12, E. Lagzdina24, A. Lahtinen5, A. Laing1, N. Lam1, H.T. Lambertz44, B. Lane1, C. Lane1, E.Lascas Neto40, E. Łaszynska58, K.D. Lawson1, A. Lazaros26, E. Lazzaro12, G. Learoyd1, Chanyoung Lee92, S.E. Lee84, S. Leerink59, T. Leeson1, X. Lefebvre1, H.J. Leggate67, J. Lehmann1, M. Lehnen13, D. Leichtle31,93, F. Leipold13, I. Lengar65, M. Lennholm1,75, E. Leon Gutierrez9, B. Lepiavko82, J. Leppänen6, E. Lerche51, A. Lescinskis24, J. Lewis1, W. Leysen83, L. Li44, Y. Li44, J. Likonen6, Ch. Linsmeier44, B. Lipschultz72, X. Litaudon27,30, E. Litherland-Smith1, F. Liu27,30, T. Loarer27, A. Loarte13, R. Lobel1, B. Lomanowski29, P.J. Lomas1, J.M. Lopez21, R. Lorenzini23, S. Loreti17, U. Losada9, V.P. Loschiavo8, M. Loughlin13, Z. Louka1, J. Lovell29, T. Lowe1, C. Lowry1,75, S. Lubbad1, T. Luce13, R. Lucock1, A. Lukin94, C. Luna95, E.de la Luna9, M. Lungaroni53, C.P. Lungu63, T. Lunt18, V. Lutsenko82, B. Lyons32, A. Lyssoivan51, M. Machielsen40, E. Macusova39, R. Mäenpää59, C.F. Maggi1, R. Maggiora96, M. Magness1, S. Mahesan1, H. Maier18, R. Maingi43, K. Malinowski58, P. Manas18,54, P. Mantica12, M.J. Mantsinen97, J. Manyer78, A. Manzanares98, Ph. Maquet13, G. Marceca40, N. Marcenko87, C. Marchetto99, O. Marchuk44, A. Mariani12, G. Mariano17, M. Marin60, M. Marinelli53, T. Markovicˇ39, D. Marocco17, L. Marot33, S. Marsden1, J. Marsh1, R. Marshall1, L. Martellucci53, A. Martin1, A.J. Martin1, R. Martone8, S. Maruyama13, M. Maslov1, S. Masuzaki19, S. Matejcik88, M. Mattei8, G.F. Matthews1, D. Matveev44, E. Matveeva39, A. Mauriya2, F. Maviglia8, M. Mayer18, M.-L. Mayoral1,69, S. Mazzi54, C. Mazzotta17, R. McAdams1, P.J. McCarthy89 K.G. McClements1, J. McClenaghan32, P. McCullen1, D.C. McDonald1, D. McGuckin1, D. McHugh1, G. McIntyre1, R. McKean1, J. McKehon1, B. McMillan57, L. McNamee1, A. McShee1, A. Meakins1, S. Medley1, C.J. Meekes60,100, K. Meghani1, A.G. Meigs1, G. Meisl18, S. Meitner29, S. Menmuir1, K. Mergia10, S. Merriman1, Ph. Mertens44, S. Meshchaninov15, A. Messiaen51, R. Michling57, P. Middleton1, D. Middleton-Gear1, J. Mietelski38, D. Milanesio96, E. Milani53, F. Militello1, A.Militello Asp1, J. Milnes1, A. Milocco56, G. Miloshevsky101, C. Minghao1, S. Minucci52, I. Miron63, M. Miyamoto102, J. Mlynár39,103, V. Moiseenko71, P. Monaghan1, I. Monakhov1, T. Moody1, S. Moon34, R. Mooney1, S. Moradi51, J. Morales27, R.B. Morales1, S. Mordijck104, L. Moreira1, L. Morgan1, F. Moro17, J. Morris1, K.-M. Morrison1, L. Msero13,33, D. Moulton1, T. Mrowetz1, T. Mundy1, M. Muraglia54, A. Murari23,30, A. Muraro12, N. Muthusonai1, B. N’Konga45, Yong-Su Na92, F. Nabais2, M. Naden1, J. Naish1, R. Naish1, F. Napoli17, E. Nardon27, V. Naulin86, M.F.F. Nave2, I. Nedzelskiy3, G. Nemtsev15, V. Nesenevich4, I. Nestoras1, R. Neu18, V.S. Neverov11, S. Ng1, M. Nicassio1, A.H. Nielsen86, D. Nina2, D. Nishijima105, C. Noble1, C.R. Nobs1, M. Nocente56, D. Nodwell1, K. Nordlund5, H. Nordman13, R. Normanton1, J.M. Noterdaeme18, S. Nowak12, E. Nunn1, H. Nyström34, M. Oberparleiter74, B. Obryk38, J. O’Callaghan1, T. Odupitan1, H.J.C. Oliver1,50, R. Olney1, M. O’Mullane106, J. Ongena51, E. Organ1, F. Orsitto8, J. Orszagh88, T. Osborne32, R. Otin1, T. Otsuka107, A. Owen1, Y. Oya108, M. Oyaizu7, R. Paccagnella23, N. Pace1, L.W. Packer1, S. Paige1, E. Pajuste24, D. Palade63, S.J.P. Pamela1, N. Panadero9, E. Panontin56, A. Papadopoulos26, G. Papp18, P. Papp88, V.V. Parail1, C. Pardanaud54, J. Parisi1,109, F.Parra Diaz109, A. Parsloe1, M. Parsons29, N. Parsons1, M. Passeri53, A. Patel1, A. Pau40, G. Pautasso18, R. Pavlichenko71, A. Pavone36, E. Pawelec90, C.Paz Soldan110, A. Peacock1,75, M. Pearce1, E. Peluso53, C. Penot13, K. Pepperell1, R. Pereira2, T. Pereira2, E.Perelli Cippo12, P. Pereslavtsev107, C. Perez von Thun58, V. Pericoli58, D. Perry1, M. Peterka39, P. Petersson34, G. Petravich22, N. Petrella1, M. Peyman1, M. Pillon17, S. Pinches13, G. Pintsuk44, W. Pires de Sá55, A. Pires dos Reis55, C. Piron17, L. Pionr23,111, A. Pironti8, R. Pitts13, K.L. van de Plassche60, N. Platt1, V. Plyusnin2, M. Podesta43, G. Pokol22, F.M. Poli43, O.G. Pompilian63, S. Popovichev1, M. Poradzinski58, M.T. Porfiri17, M. Porkolab20, C. Porosnicu63, M. Porton1, G. Poulipoulis112, I. Predebon23, G. Prestopino53, C. Price1, D. Price1, M. Price1, D. Primetzhofer16, P. Prior1, G. Provatas46, G. Pucella17, P. Puglia40, K. Purahoo1, I. Pusztai73, O. Putignano56, T. Pütterich18, A. Quercia8, E. Rachlew73, G. Radulescu29, V. Radulovic65, M. Rainford1, P. Raj31, G. Ralph1, G. Ramogida17, D. Rasmussen29, J.J. Rasmussen86, G. Rattá9, S. Ratynskaia113, M. Rebai12, D. Refy22, R. Reichle13, M. Reinke29, D. Reiser44, C. Reux27, S. Reynolds1, M.L. Richiusa1, S. Richyal1, D. Rigamonti12, F.G. Rimini1, J. Risner29, M. Riva17, J. Rivero-Rodriguez79, C.M. Roach1, R. Robins1, S. Robinson1, D. Robson1, R. Rodionov87, P. Rodrigues2, M.Rodriguez Ramos109, P. Rodriguez-Fernandez3, F. Romanelli74, M. Romanelli1, S. Romanelli1, J. Romazanov44, R. Rossi53, S. Rowe1, D. Rowlands1,30, M. Rubel34, G. Rubinacci8, G. Rubino52, L. Ruchko55, M. Ruiz21, J.Ruiz Ruiz109, C. Ruset63, J. Rzadkiewicz3, S. Saarelma1, E. Safi5, A. Sahlberg16, M. Salewski86, A. Salmi6, R. Salmon1, F. Salzedas2,114, I. Sanders1, D. Sandiford1, B. Santos2, A. Santucci17, K. Särkimäki73, R. Sarwar1, I. Sarychev1, O. Sauter40, P. Sauwan14, N. Scapin48, F. Schluck44, K. Schmid18, S. Schmuck12, M. Schneider13, P.A. Schneider18, D. Schwörer67, G. Scott1, M. Scott1, D. Scraggs1, S. Scully1, M. Segato1, Jaemin Seo92, G. Sergienko44, M. Sertoli1, S.E. Sharapov1, A. Shaw1, H. Sheikh1, U. Sheikh40, A. Shepherd1, A. Shevelev4, P. Shigin13, K. Shinohara115, S. Shiraiwa43, D. Shiraki29, M. Short1, G. Sias25, S.A. Silburn1, A. Silva2, C. Silva2, J. Silva1, D. Silvagni18, D. Simfukwe1, J. Simpson1,59, D. Sinclair1, S.K. Sipilä59, A.C.C. Sips75, P. Siren5, A. Sirinelli13, H. Sjöstrand16, N. Skinner1, J. Slater1, N. Smith1, P. Smith1, J. Snell1, G. Snoep60, L. Snoj65, P. Snyder32, S. Soare63, E.R. Solano9, V. Solokha59, A. Somers67, C. Sommariva40, K. Soni33, E. Sorokovoy71, M. Sos39, J. Sousa2, C. Sozzi12, S. Spagnolo23, T. Spelzini1, F. Spineanu63, D. Spong29, D. Sprada1, S. Sridhar27, C. Srinivasan1, G. Stables1, G. Staebler32, I. Stamatelatos10, Z. Stancar65, P. Staniec1, G. Stankunas116, M. Stead1, E. Stefanikova34, A. Stephen1, J. Stephens1, P. Stevenson1, M. Stojanov1, P. Strand74, H.R. Strauss117, S. Strikwerda1, P. Ström34, C.I. Stuart1, W. Studholme1, M. Subramani1, E. Suchkov88, S. Sumida7, H.J. Sun1, T.E. Susts24, J. Svensson36, J. Svoboda39, R. Sweeney20, D. Sytnykov71, T. Szabolics22, G. Szepesi1, B. Tabia1, T. Tadic´46, B. Tál18, T. Tala6, A. Tallargio1, P. Tamain27, H. Tan1, K. Tanaka19, W. Tang43, M. Tardocchi12, D. Taylor1, A.S. Teimane24, G. Telesca58, N. Teplova4, A. Teplukhina43, D. Terentyev83, A. Terra44, D. Terranova23, N. Terranova17, D. Testa40, E. Tholerus1,34, J. Thomas1, E. Thoren113, A. Thorman1, W. Tierens18, R.A. Tinguely20, A. Tipton1, H. Todd1, M. Tokitani19, P. Tolias113, M. Tomes39, A. Tookey1, Y. Torikai118, U. von Toussaint18, P. Tsavalas10, D. Tskhakaya39,119, I. Turner1, M. Turner1, M.M. Turner67, M. Turnyanskiy1,69, G. Tvalashvili1, S. Tyrrell1, M. Tyshchenko82, A. Uccello12, V. Udintsev13, G. Urbanczyk27, A. Vadgama1, D. Valcarcel1, M. Valisa23, P.Vallejos Olivares34, O. Vallhagen73, M. Valovicˇ1, D. Van Eester51, J. Varje59, S. Vartanian27, T. Vasilopoulou10, G. Vayakis13, M. Vecsei22, J. Vega9, S. Ventre8, G. Verdoolaege64, C. Verona53, G.Verona Rinati53, E. Veshchev13, N. Vianello23, E. Viezzer79, L. Vignitchouk113, R. Vila9, R. Villari17, F. Villone8, P. Vincenzi23, I. Vinyar94, B. Viola17, A.J. Virtanen59, A. Vitins24, Z. Vizvary1, G. Vlad17, M. Vlad63, P. Vondrácek39, P.de Vries13, B. Wakeling1, N.R. Walkden1, M. Walker1, R. Walker1, M. Walsh13, E. Wang44, N. Wang1, S. Warder1, R. Warren1, J. Waterhouse1, C. Watts13, T. Wauters51, A. Weckmann34, H.Wedderburn Maxwell1, M. Weiland18, H. Weisen40, M. Weiszflog16, P. Welch1, N. Wendler58, A. West1, M. Wheatley1, S. Wheeler1, A. Whitehead1, D. Whittaker1, A. Widdowson1, S. Wiesen44, J. Wilkinson1, J.C. Williams1, D. Willoughby1, I. Wilson1, J. Wilson1, T. Wilson1, M. Wischmeier18, P. Wise1, G. Withenshaw1, A. Withycombe1, D. Witts1, A. Wojcik-Gargula38, E. Wolfrum18, R. Wood1, C. Woodley1, R. Woodley1, B. Woods1, J. Wright1, J.C. Wright20, T. Xu1, D. Yadikin74, M. Yajima19, Y. Yakovenko82, Y. Yang13, W. Yanling44, V. Yanovskiy39, I. Young1, R. Young1, R.J. Zabolockis24, J. Zacks1, R. Zagorski3, F.S. Zaitsev88, L. Zakharov5, A. Zarins24, D. Zarzoso Fernandez54, K.-D. Zastrow1, Y. Zayachuk1, M. Zerbini17, W. Zhang18, Y. Zhou34, M. Zlobinski44, A. Zocco36, A. Zohar65, V. Zoita63, S. Zoletnik22, V.K. Zotta81, I. Zoulias1, W. Zwingmann2 and I. Zychor3 // 1 United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom of Great Britain and Northern Ireland 2 Instituto de Plasmas e Fusao Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal 3 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Swierk, Poland 4 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russia 5 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland 6 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland 7 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan 8 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy 9 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain 10 NCSR ‘Demokritos’ 153 10, Agia Paraskevi Attikis, Greece 11 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russia 12 Institute for Plasma Science and Technology, CNR, via R. Cozzi 53, 20125 Milano, Italy 13 ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul Lez Durance Cedex, France 14 Universidad Nacional de Educacion a Distancia, Dept Ingn Energet, Calle Juan del Rosal 12, E-28040 Madrid, Spain 15 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russia 16 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden 17 Dip.to Fusione e Tecnologie per la Sicurezza Nucleare, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy 18 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany 19 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan 20 MIT Plasma Science and Fusion Center, Cambridge, MA 02139, United States of America 21 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain 22 Centre for Energy Research, POB 49, H-1525 Budapest, Hungary 23 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy 24 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia 25 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123 Cagliari, Italy 26 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece 27 CEA, IRFM, F-13108 Saint Paul Lez Durance, France 28 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy 29 Oak Ridge National Laboratory, Oak Ridge, TN 37831, TN, United States of America 30 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom of Great Britain and Northern Ireland 31 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany 32 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America 33 Department of Physics, University of Basel, Switzerland 34 Fusion Plasma Physics, EECS, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden 35 Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France 36 Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald, Germany 37 Maritime University of Szczecin Faculty of Marine Engineering, Waly Chrobrego 1-2, 70-500 Szczecin, Poland 38 Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland 39 Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic 40 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland 41 University of Wisconsin-Madison, Madison, WI 53706, United States of America 42 Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine 43 Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton, NJ 08543, NJ, United States of America 44 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, Plasmaphysik, 52425 Jülich, Germany 45 Université Cote d’Azur, CNRS, Inria, LJAD, Parc Valrose, 06108 Nice Cedex 02, France 46 Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia 47 The National Institute for Optoelectronics, Magurele-Bucharest, Romania 48 Mechanics, SCI, KTH SE-100 44 Stockholm, Sweden 49 Fourth State Research, 503 Lockhart Dr, Austin, TX, United States of America 50 University of Texas at Austin, Institute for Fusion Studies, Austin, TX 78712, United States of America 51 Laboratory for Plasma Physics LPP-ERM/KMS, B-1000 Brussels, Belgium 52 University of Tuscia, DEIM, Via del Paradiso 47, 01100 Viterbo, Italy 53 Università di Roma Tor Vergata, Via del Politecnico 1, Roma, Italy 54 Aix-Marseille University, CNRS, PIIM, UMR 7345, 13013 Marseille, France 55 Instituto de Física, Universidade de Sao Paulo, Rua do Mat˜ao Travessa R Nr.187, CEP 05508-090 Cidade Universitária, Sao Paulo, Brasil 56 University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy 57 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL, United Kingdom of Great Britain and Northern Ireland 58 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland 59 Aalto University, PO Box 14100, FIN-00076 Aalto, Finland 60 FOM Institute DIFFER, Eindhoven, The Netherlands 61 Warsaw University of Technology, 02-507 Warsaw, Poland 62 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University, Belfast, BT7 1NN, United Kingdom of Great Britain and Northern Ireland 63 The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania 64 Department of Applied Physics, Ghent University, 9000 Ghent, Belgium 65 Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia 66 The National Institute for Cryogenics and Isotopic Technology, Ramnicu Valcea, Romania 67 Dublin City University (DCU), Dublin, Ireland 68 University of California at San Diego, La Jolla, CA 92093, United States of America 69 EUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany 70 UNED, Dpto. Informática y Automática, Madrid, Spain 71 National Science Center ‘Kharkov Institute of Physics and Technology’, Akademichna 1, Kharkiv 61108, Ukraine 72 York Plasma Institute, Department of Physics, University of York, York, YO10 5DD, United Kingdom of Great Britain and Northern Ireland 73 Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden 74 Department of Space, Earth and Environment, Chalmers University of Technology, SE-41296 Gothenburg, Sweden 75 European Commission, B-1049 Brussels, Belgium 76 University of Tennessee, Knoxville, TN 37996, TN, United States of America 77 Universitat Politècnica de Catalunya, Barcelona, Spain 78 Barcelona Supercomputing Center, Barcelona, Spain 79 Universidad de Sevilla, Sevilla, Spain 80 Aix-Marseille University, CNRS, IUSTI, UMR 7343, 13013 Marseille, France 81 Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, SAPIENZA Università di Roma, Via Eudossiana 18, 00184 Roma, Italy 82 Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03680, Ukraine 83 Studiecentrum voor Kernenergie—Centre d’Etude de l’Energie Nucléaire, Boeretang 200, 2400 Mol, Belgium 84 University of Toyama, Toyama, 930-8555, Japan 85 University of California, Irvine, Irvine, California 92697, United States of America 86 Department of Physics, Technical University of Denmark, Bldg 309, DK-2800 Kgs Lyngby, Denmark 87 Institution ‘Project Center ITER’, Moscow, 123182, Russia 88 Faculty of Mathematics, Department of Experimental Physics, Physics and Informatics Comenius University Mlynska dolina F2, 84248 Bratislava, Slovakia 89 University College Cork (UCC), Cork, Ireland 90 Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland 91 Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-174, Republic of Korea 92 Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea 93 Fusion for Energy Joint Undertaking, Josep Pl. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain 94 PELIN LLC, 27a, Gzhatskaya Ulitsa, Saint Petersburg, 195220, Russia 95 Arizona State University, Tempe, AZ, United States of America 96 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy 97 ICREA and Barcelona Supercomputing Center, Barcelona, Spain 98 Universidad Complutense de Madrid, Madrid, Spain 99 Istituto dei Sistemi Complessi—CNR and Dipartimento di Energia—Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy 100 Eindhoven University of Technology, The Netherlands 101 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States of America 102 Department of Material Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan 103 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 78/7, 115 19 Praha 1, Czech Republic 104 College of William and Mary, Williamsburg, VA 23185, United States of America 105 University of California, 1111 Franklin St., Oakland, CA 94607, United States of America 106 University of Strathclyde, Glasgow, G4 0NG, United Kingdom of Great Britain and Northern Ireland 107 Kindai University, Higashi-Osaka, 577-8502, Japan 108 Shizuoka University, Shizuoka, 422-8529, Japan 109 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom of Great Britain and Northern Ireland 110 Columbia University, New York, NY 10027, United States of America 111 Dipartimento di Fisica ‘G. Galilei’, Universita’ degli Studi di Padova, Padova, Italy 112 Space and Plasma Physics, EECS, KTH SE-100 44 Stockholm, Sweden 113 University of Ioannina, Panepistimioupoli Ioanninon, PO Box 1186, 45110 Ioannina, Greece 114 Universidade do Porto, Faculdade de Engenharia, 4200-465 Porto, Portugal 115 The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan 116 Lithuanian Energy Institute, Breslaujos g. 3, LT-44403, Kaunas, Lithuania 117 HRS Fusion, West Orange, NJ, United States of America 118 Ibaraki University Graduate School of Science and Engineering, Mito, Ibaraki 310-8512, Japan 119 Technische Universität Wien, Fusion@ÖAW Österreichische Akademie der Wissenschaften (ÖAW), Austria
103. On the role of filaments in perpendicular heat transport at the scrape-off layer.
- Author
-
D. Carralero, S. Artene, M. Bernert, G. Birkenmeier, M. Faitsch, P. Manz, P. De Marne, U. Stroth, M. Wischmeier, E. Wolfrum, Team, The Asdex Upgrade, and Team, The Euro-Fusion Mst1
- Subjects
FIBERS ,TOKAMAKS ,HEAT flux ,PLASMA boundary layers ,ADVECTION - Abstract
In this work we carry out quantitative measurements of particle and heat transport associated to SOL filaments in a tokamak, and relate density shoulder formation to the advection of energy in the far SOL. For the first time, this attempt includes direct measurements of ion and electron temperatures for background and filaments. With this aim, we combine data from a number of equivalent L-mode discharges from the ASDEX Upgrade tokamak in which different probe heads were installed on the midplane manipulator. This approach is validated by a comparison with independent diagnostics. Results indicate an increase of heat transport associated to filaments after the shoulder formation. Several centimeters into the SOL, filaments are still found to carry a substantial fraction (up to one fifth) of the power ejected at the separatrix. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
104. Plasma shaping and its impact on the pedestal of ASDEX Upgrade: edge stability and inter-ELM dynamics at varied triangularity.
- Author
-
F.M. Laggner, E. Wolfrum, M. Cavedon, M.G. Dunne, G. Birkenmeier, R. Fischer, M. Willensdorfer, F. Aumayr, Team, The EUROfusion MST1, and Team, The ASDEX Upgrade
- Subjects
HEATING ,LOCALIZED modes ,ELECTRON density ,SOBOLEV gradients ,TIMESCALE number - Abstract
The plasma shape, in particular the triangularity (δ), impacts on the pedestal stability. A scan of δ including a variation of heating power (P
heat ) and gas puff was performed to study the behaviour of edge localised modes (ELMs) and the pre-ELM pedestal stability for different plasma shapes. Generally, at higher δ the pedestal top electron density (ne ) is enhanced and the ELM repetition frequency (fELM ) is reduced. For all δ, the pedestal top ne is already fully established to its pre-ELM value during the initial recovery phase of the ne pedestal, which takes place immediately after the ELM crash. The lowering of the fELM with increasing δ is related to longer pedestal recovery phases, especially the last pre-ELM phase with clamped pedestal gradients (after the recovery phases of the ne and electron temperature (Te ) pedestal) is extended. In all investigated discharge intervals, the pre-ELM pedestal profiles are in agreement with peeling–ballooning (PB) theory. Over the investigated range of δ, two well-separated fELM bands are observed in several discharge intervals. Their occurrence is linked to the inter-ELM pedestal stability. In both kinds of ELM cycles the pedestal evolves similarly, however, the ‘fast’ ELM cycle occurs before the global plasma stored energy (WMHD ) increases, which then provides a stabilising effect on the pedestal, extending the inter-ELM period in the case of the ‘slow’ ELM cycle. At the end of a ‘fast’ ELM cycle the ne profile is radially shifted inwards relative to the ne profile at the end of a ‘slow’ ELM cycle, leading to a reduced pressure gradient. The appearance of two fELM bands suggests that the pedestal becomes more likely PB unstable in certain phases of the inter-ELM evolution. Such a behaviour is possible because the evolution of the global plasma is not rigidly coupled to the evolution of the pedestal structure on the timescales of an ELM cycle. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
105. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade.
- Author
-
B Vanovac, E Wolfrum, S S Denk, F Mink, F M Laggner, G Birkenmeier, M Willensdorfer, E Viezzer, M Hoelzl, S J Freethy, M G Dunne, A Lessig, N C Luhmann Jr, and Team, The Asdex Upgrade Team And The Eurofusion Mst1
- Subjects
ELECTRON cyclotron resonance sources ,EMISSION spectroscopy ,ELECTRON density ,ELECTRON temperature measurement ,POLOIDAL magnetic fields - Abstract
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T
e ) and its fluctuations (δTe ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%–15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (Trad ) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s–1 . The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s–1 . Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
106. Small amplitude oscillations before the L-H transition in EAST.
- Author
-
L M Shao, G S Xu, R Chen, L Chen, G Birkenmeier, Y M Duan, W Gao, P Manz, T H Shi, H Q Wang, L Wang, M Xu, N Yan, L Zhang, and Team, the EAST
- Subjects
ELECTRIC fields ,REYNOLDS equations ,PERTURBATION theory ,POLOIDAL magnetic fields ,PLASMA gases - Abstract
Before L- to H-mode transition small amplitude oscillations (SAOs), different from the widely known intermediate phase (I-phase), at a frequency of a few kilohertz can be observed on EAST. Under sufficient auxiliary heating, SAOs can transit to the H-mode or I-phase. The edge radial electric field () located inside the separatrix can be observed to deepen after bursts of SAOs. In SAOs, the turbulence level preceding the negative radial electric field and floating potential perturbation about 90° in phase, consistent with the model of zonal-flows and turbulence interaction, is measured by the Langmuir probe at the bottom of the edge well. A physical mechanism for SAOs is developed: at a critical gradient in pressure and , turbulence increases at the inboard edge of the well. The increased turbulence level enhances the radial particle, energy and momentum transport at the plasma edge and increases the amplitude of the zonal flow at the bottom of the well due to the increased Reynolds force. The increase in the zonal flow amplitude acts to mitigate the turbulence on the inboard edge of the well, driving a limit-cycle oscillation. The poloidal magnetic perturbations of the oscillations are poloidal in-out/up-down asymmetric and toroidal symmetric in the SAOs. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
107. Qualification and implementation of line ratio spectroscopy on helium as plasma edge diagnostic at ASDEX Upgrade.
- Author
-
M Griener, J M Muñoz Burgos, M Cavedon, G Birkenmeier, R Dux, B Kurzan, O Schmitz, B Sieglin, U Stroth, E Viezzer, E Wolfrum, and Team, the ASDEX Upgrade
- Subjects
HELIUM plasmas ,TOKAMAKS ,PLASMA-beam interactions ,ELECTRON density ,STEADY state conduction - Abstract
A new thermal helium beam diagnostic has been implemented as plasma edge diagnostic at the ASDEX Upgrade (AUG) tokamak. The helium beam is built to measure the electron density n
e and temperature Te simultaneously with high spatial and temporal resolution in order to investigate steady-state as well as fast transport processes in the plasma edge region. For the thermal helium beam emission line ratio spectroscopy, neutral helium is locally injected into the plasma by a piezo valve. This enabled the measurement of the line resolved emission intensities of seven He i lines for different plasma scenarios in AUG. The different line ratios can be used together with a collisional-radiative model (CRM) to reconstruct the underlying electron temperature and density. Ratios from the same spin species are used for the electron density reconstruction, whereas spin mixed ratios are sensitive to electron temperature changes. The different line ratios as well as different CRMs are tested for their suitability for diagnostic applications. Furthermore their consistency in calculating identical parameters is validated and the resulting profiles are compared to other available diagnostics at AUG. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
108. Divertor, scrape-off layer and pedestal particle dynamics in the ELM cycle on ASDEX Upgrade.
- Author
-
F M Laggner, S Keerl, J Gnilsen, E Wolfrum, M Bernert, D Carralero, L Guimarais, V Nikolaeva, S Potzel, M Cavedon, F Mink, M G Dunne, G Birkenmeier, R Fischer, E Viezzer, M Willensdorfer, M Wischmeier, F Aumayr, Team, the EUROfusion MST1, and Team, the ASDEX Upgrade
- Subjects
FUSION reactor divertors ,PARTICLE dynamics analysis ,ELECTRON density ,TOKAMAKS ,HEAT flux measurement - Abstract
In addition to the relaxation of the pedestal, edge localised modes (ELMs) introduce changes to the divertor and scrape-off layer (SOL) conditions. Their impact on the inter-ELM pedestal recovery is investigated, with emphasis on the electron density (n
e ) evolution. The typical ELM cycle occurring in an exemplary ASDEX Upgrade discharge interval at moderate applied gas puff and heating power is characterised, utilising several divertor, SOL and pedestal diagnostics. In the studied discharge interval the inner divertor target is detached before the ELM crash, while the outer target is attached. The particles and power expelled by the ELM crash lead to a re-attachment of the inner target plasma. After the ELM crash, the outer divertor target moves into a high recycling regime with large ne in front of the plate, which is accompanied by high main chamber neutral fluxes. On similar timescales, the inner target fully detaches and the high field side high density region (HFSHD) is formed reaching up to the high field side midplane. This state evolves again to the pre-ELM state, when the main chamber neutral fluxes are reduced later in the ELM cycle. Neither the timescale of the appearance of the HFSHD nor the increase of the main chamber neutral fluxes fit the timescale of the ne pedestal, which is faster. It is found that during the ne pedestal recovery, the magnetic activity at the low field side midplane is strongly reduced indicating a lower level of fluctuations. A rough estimation of the particle flux across the pedestal suggests that the particle flux is reduced in this period. In conclusion, the evolution of the ne pedestal is determined by a combination of neutral fluxes, HFSHD and reduced particle flux across the pedestal. A reduced particle flux explains the fast, experimentally observed re-establishment of the ne pedestal best, whereas neutrals and HFSHD impact on the evolution of the SOL and separatrix conditions. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
109. Density profile and turbulence evolution during L-H transition studied with the ultra-fast swept reflectometer on ASDEX Upgrade.
- Author
-
A Medvedeva, C Bottereau, F Clairet, P Hennequin, U Stroth, G Birkenmeier, M Cavedon, G D Conway, T Happel, S Heuraux, D Molina, A Silva, M Willensdorfer, and Team, ASDEX Upgrade
- Subjects
TURBULENCE ,REFLECTOMETER ,ELECTRIC fields ,PLASMA flow ,ELECTRONS - Abstract
The ultra-fast swept reflectometer with the sweep time of 1 μs, inferior to the characteristic turbulent time scale, has provided the measurements of the fast density and density fluctuation evolution across major parts of tokamak plasma radius. The L-H transitions in a series of plasma discharges in ASDEX Upgrade have been studied with a high temporal resolution. The comparison of the density fluctuation behaviour in L- and H-mode is presented. The I-phase oscillation dynamics has been described in terms of the density fluctuation level, the radial electric field and the normalised electron pressure gradient. Indications for a phase shift between the turbulence and the radial electric field are observed in the beginning of the I-phase, where the turbulence grows first and the radial electric field increase follows. In the established I-phase the electric field and the turbulence are in phase. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
110. Stationary ELM-free H-mode in ASDEX Upgrade
- Author
-
A. Silva, E. Seliunin, M. Schubert, Carlos A. Silva, Asdex, L. Gil, T. Happel, Ulrich Stroth, J. Stober, J. M. Santos, Th. Pütterich, G. Birkenmeier, L. Guimarais, G. D. Conway, EUROfusion, E. Trier, E. Wolfrum, P. A. Schneider, and A. Kallenbach
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Pedestal ,ASDEX Upgrade ,0103 physical sciences ,Mode (statistics) ,010306 general physics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas - Full Text
- View/download PDF
111. Deep neural networks for plasma tomography with applications to JET and COMPASS
- Author
-
J. Denis, M. Tardocchi, Kiptily, M. Koubiti, M. Ghate, R. Michling, G. De Masi, T. Tala, M. Bassan, R. McAdams, S. Dowson, Antoine Merle, Seppo Koivuranta, O. J. Kwon, S. Mahesan, P. Sparapani, A. Malaquias, M. Tsalas, Gennady V. Miloshevsky, M. Vecsei, Michal Stano, E. Lerche, Štefan Matejčík, Piergiorgio Sonato, S. D. Pinches, A. Dal Molin, O. McCormack, B. Colling, F. Mink, Ph. Mertens, P. Drewelow, Nuno Cruz, D. Iglesias, Alessandro Zocco, K. Rathod, S. Collins, F. Koechl, James Buchanan, Andrew West, Francesco Maviglia, E. Stefanikova, David Taylor, B. Graham, T. Lunt, S. Meshchaninov, Arturo Buscarino, G. L. Ravera, Maide Bucolo, J. P. Thomas, S. Foley, B. Wakeling, N. Ashikawa, D. W. Robson, N. J. Conway, V. P. Lo Schiavo, Stefan Buller, Sergey Popovichev, M. Saleem, Jorge Luis Rodriguez, M. Wheatley, Gabriele Croci, Hugo Bufferand, J.F. Artaud, R. C. Felton, O. Kovanda, D. Hepple, K. Dylst, Gabor Szepesi, M. Oberkofler, G.J. van Rooij, N. Teplova, Istvan Cziegler, K. K. Kirov, S. Vartanian, Y. Xue, D. Nina, J. Bernardo, Lorenzo Figini, Guglielmo Rubinacci, Peter Lang, R. Scannell, N. C. Hawkes, P. Denner, Istvan Pusztai, D. D. Carvalho, Salvatore Ventre, A. Lescinskis, Afanasev, C. Hamlyn-Harris, Panagiotis Tolias, R. Vale, T. O'Gorman, S. Lesnoj, I.E. Day, Karol Malinowski, D. Carralero, N. Balshaw, Massimo Angelone, Michaele Freisinger, I. Monakhov, Jesús Vega, Jonathan Citrin, Antti Hakola, H. Patten, P. A. Simmons, Y. Austin, Sehyun Kwak, J. Regana, Rohde, T. Eich, A. Alkseev, R. Lawless, C. G. Elsmore, Fusco, S. Hacquin, S. A. Silburn, A. Fernades, Luigi Fortuna, P. Bunting, R. Sartori, Yuji Hatano, D. Borodin, L. Colas, Daniele Marocco, M. Lennholm, Carlo Sozzi, J. J. Rasmussen, P. McCullen, Tommy Ahlgren, A. Kirschner, Thomas Johnson, M. Rack, Göran Ericsson, Hans Nordman, Jakub Bielecki, P. Merriman, M. Cavedon, G. Hermon, Geert Verdoolaege, K. J. Gibson, Daisuke Nishijima, R. Clarkson, Fuchs, M. Tomes, R. Zagórski, Gerald Pintsuk, W. Higginson, Daniel F. Valcarcel, R. Mooney, K. Dawson, A. Tallargio, T.H. Osborne, P. J. Carvalho, M. Gethins, R. Dux, Pierre Dumortier, G. Urbanczyk, Inessa Bolshakova, R. King, B. Tal, Daniel Tegnered, J. W. Coenen, Leena Aho-Mantila, Eva Belonohy, S. Schmuck, Kai Nordlund, Grégoire Hornung, G. Tvalashvili, M. De Bock, Y. Baranov, G. De Tommasi, A. Urban, L. Forsythe, I. Zychor, J. Dobrashian, E. Clark, Paolo Arena, Alessia Santucci, Ivan Lupelli, S. Nowak, M. Curuia, Jonathan Graves, J. C. Hillesheim, Claudio Verona, Zoita, S. Moon, C. Castaldo, A.V. Stephen, Karl Schmid, A. Sahlberg, C. Di Troia, R. Woodley, L. Garzotti, D. Sandiford, Matthew M. Knight, Juho Leppänen, S. Emery, O. G. Pompilian, M. Goniche, C. Luna, M. Mayer, M. Baruzzo, A. Weckmann, M. Kempenaars, S. Hazel, Fabio Pisano, Claudia Corradino, A. G. Meigs, P. Leichauer, S. Potzel, Stéphane Devaux, C. Piron, G. Saibene, David A Rasmussen, Bruce Lipschultz, A. Di Siena, E. Lazzaro, J. Deane, C. Meadowcroft, C. J. Rapson, K.-D. Zastrow, Ph. Duckworth, Tom Wauters, F. Nabais, T. Goerler, D. Brunetti, R. Ellis, David Moulton, L. Jones, E. Delabie, Anna Salmi, Luciano Bertalot, G. Burroughes, B. Kos, Laurent Marot, Daniel Primetzhofer, I Miron, N. Lam, F. Napoli, S. Rowe, E. Pajuste, Choong-Seock Chang, R.P. Doerner, D. Silvagni, C. Guillemaut, S. Warder, A.J. Thornton, Matthew Carr, A. Dempsey, Jorge Morales, Pramit Dutta, J. L. Herfindal, S. Maruyama, P. Camp, X. Lefebvre, Ye. O. Kazakov, Andrea G. Chiariello, Gabriele Manduchi, Andre Neto, T. Powell, J. Griffiths, José Vicente, C. Barcellona, J. Hobirk, F. Clairet, L. Xiang, Dirk Reiser, H. Bergsåker, I. Duran, G. Giacometti, M. Kalsey, David Tskhakaya, A. Martin de Aguilera, T. Dittmar, Edmund Highcock, I. Uytdenhouwen, S. Soare, Giuseppe Prestopino, L. Chôné, W. Davis, G. De Temmerman, Basiuk, G. Learoyd, C. Guerard, A. Klix, M. Incelli, B. Viola, R. J. Robins, A. Burckhart, W. Leysen, Jochen Linke, M. Oberparleiter, A. Murari, M. Sertoli, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, G. T. A. Huijsmans, Hajime Urano, Justine M. Kent, A. Kallenbach, D. Fagan, D. S. Darrow, Benedikt Geiger, A. Wynn, X. Sáez, B. Beckett, Horacio Fernandes, G. Ferro, B. Alper, George Wilkie, A. Uccello, T.C. Luce, S. Zoletnik, Petrzilka, Fulvio Auriemma, D. Guard, A. Ho, R. Henriques, I. T. Chapman, D. Butcher, Ph. Maquet, C. Crapper, S. Murphy, C. Ham, D. Brennan, S. Knott, Krasilnikov, D. Kogut, Cédric Pardanaud, K. Galazka, Nicolò Marconato, Daniele Bonfiglio, M. Sos, E. Militello-Asp, Nesenevich, Sean Conroy, S. Hall, L. F. Ruchko, L. Laguardia, O. Marchuk, F.P. Orsitto, I. S. Nedzelskiy, Eva Macusova, E. Andersson Sundén, C. Ayres, R. Prakash, C. Giroud, M. Parsons, R. Rodionov, M. Marin, A. P. Vadgama, A. Reed, Jacob Eriksson, P. Macheta, R. Neu, J. Orszagh, L. Gil, Riccardo Maggiora, M. Peterka, P. Devynck, M. Price, J. Likonen, Andrew M. Edwards, P. Dalgliesh, I. Vinyar, Andrea Malizia, A. Brett, Jane Johnston, A. Kappatou, P. Blatchford, B. Lloyd, P. Vincenzi, A. Mauriya, A. Garcia-Carrasco, Z. Stancar, D. B. Gin, Gediminas Stankunas, J. Edwards, Giuseppe Ambrosino, A. Goodyear, M. Lungaroni, M. Gardener, R.A. Pitts, Svetlana V. Ratynskaia, E. Ivings, Marek Rubel, L. Calacci, Ivo S. Carvalho, M. Afzal, M. Gherendi, D. Schworer, C. Watts, A. M. Messiaen, E. Safi, P. David, A. Petre, J. Uljanovs, U. von Toussaint, H. Greuner, D. Del Sarto, A.C.A. Figueiredo, D. Gallart, R. Bilato, M. Enachescu, P. Monaghan, M. S. J. Rainford, A. Boboc, M. Reinhart, Hiroyasu Utoh, B. P. Duval, L. Hackett, M. Halitovs, G. De Dominici, B. Lomanowski, P. Cahyna, Aslanyan, T. May-Smith, M. Richiusa, A. Goussarov, M. Okabayashi, R. Howell, T. Tadic, M. E. Manso, J. F. Rivero-Rodriguez, Wayne Arter, Ivan Calvo, U. Losada, H. Weisen, A. Teplukhina, Marica Rebai, R. Andrews, C. H. A. Hogben, M. Klas, A. E. Shevelev, J. McKehon, F. Reimold, Enrico Zilli, R. Maingi, M.F. Stamp, A. Rakha, H. T. Kim, D. Ciric, Eric Nardon, A. Somers, I. Igaune, E. Laszynska, S. Saarelma, A. Cullen, Mǎdǎlina Vlad, D. Nodwell, S. Griph, T. Donne, T. Boyce, M. Tyshchenko, Paulo Carvalho, Elena Bruno, Ion E. Stamatelatos, A. Patel, E. de la Luna, F. Causa, Robin Barnsley, Michael Lehnen, F. Belli, N. Jones, B. Bauvir, M. Tokitani, I. Turner, Y. Zhou, J. Simpson, A. Vitins, D. Rendell, Alberto Milocco, Benjamin P. Brown, F.G. Rimini, C. Lamb, V. Thompson, E. Alessi, S. Arshad, J. Rzadkiewicz, P. Prior, J. Moran, S. D. A. Reyes Cortes, Igor Bykov, M. Weiszflog, Annette M. Hynes, Gennady Sergienko, J. Lönnroth, T. C. Hender, M.-L. Mayoral, Mattia Frasca, R. Coelho, J-J Honore, A. Jackson, A. Sirinelli, M. D. Axton, Hyun-Tae Kim, F. P. Keenan, H. J. Boyer, Elisabeth Rachlew, T. Szabolics, J. Ongena, Braic, Sandra C. Chapman, Anders Nielsen, John E. Marsh, J. Jansons, S. Gloeggler, Nengchao Wang, Naulin, M. Porton, D. Falie, P. Welch, G. T. Jones, N. Fil, M. Vincent, U. Kruezi, R. Pereira, L. Horvath, M. F. F. Nave, Lorella Carraro, N. Fonnesu, Davide Flammini, P. V. Edappala, G. M. D. Hogeweij, K. Krieger, P. Card, G. Poulipoulis, W. Studholme, Didier Mazon, T. Odupitan, D. Young, F. J. Casson, N. Muthusonai, I. Jepu, Olivier Sauter, Dimitri Voltolina, Sara Carcangiu, C. Reux, Irena Ivanova-Stanik, D. Tskhakaya Jun, O. Bogar, E. Viezzer, Shane Cooper, Fabio Villone, Florin Spineanu, H. Doerk, E. Cecil, J. Goff, F. Nespoli, F. Schluck, G. Ciraolo, Jennifer M. Lehmann, Jan Mlynar, H. J. C. Oliver, M. Marinucci, N. Krawczyk, J. Buch, M. Dreval, G. Possnert, C. Angioni, C. P. Lungu, Marco Ariola, S. Breton, Christopher N. Bowman, A. Kundu, J. Mailloux, I. Stepanov, D. Sprada, J. Zacks, G. Ramogida, E. Wolfrum, N.W. Eidietis, A. Pires dos Reis, Barbara Cannas, Robert E. Grove, A. Huber, Giuliana Sias, A. Baron Wiechec, Markus Airila, M. Berry, P. Huynh, R. Kovaldins, R. Bastow, Darren Price, S. Abduallev, P. Tsavalas, N. Aiba, Plyusnin, Ion Tiseanu, James Williams, M. Beckers, M. Weiland, S.N. Gerasimov, Alessandra Fanni, L. D. Horton, T. Xu, L. Joita, N. Reid, D. Zarzoso Fernandez, D. I. Refy, Jerry Hughes, Clarisse Bourdelle, J. E. Boom, G. Hancu, K. M. Aggarwal, F. Crisanti, M. Poradziński, A. Loarte, P. Vallejos Olivares, T. Mrowetz, Teddy Craciunescu, R. Guirlet, M. Valentinuzzi, J. Stephens, J. Stober, Michael Barnes, Isabel L. Nunes, Mario Pillon, P. Batistoni, G. Verona Rinati, Fabio Moro, R. Lucock, R. Olney, Jari Varje, B. Butler, A. Mariani, M. Hamed, Skvara, C. Terry, Larisa Baumane, T. Alarcon, Mike Kotschenreuther, T. M. Biewer, O. Hemming, N. Marcenko, Z. Kollo, B. Slade, J. Garcia, T. R. Blackman, Simone Peruzzo, N. den Harder, S. Ng, P. Siren, K. G. McClements, Rita Lorenzini, Y. Yakovenko, Lorenzo Frassinetti, J. Hawes, A. Kirk, C. Noble, Nicola Bonanomi, Y. Martynova, A.E. Shumack, F. Di Maio, H. R. Koslowski, N. Pomaro, G. Nemtsev, M. I. K. Santala, Richard George, E. Giovannozzi, T. Giegerich, C. Woodley, G. Pucella, D. Hopley, P.J. Knight, Michela Gelfusa, Francesca Poli, G. Petravich, G. Kocsis, S. Lanthaler, J. A. Wilson, D. Coombs, F. Köchl, G. Stables, Silvia Spagnolo, D. Rigamonti, W. Van Renterghem, Mike Dunne, H. Betar, W. Pires de Sa, Stjepko Fazinić, M. Nocente, G. Birkenmeier, L. Avotina, A. Horton, P. Heesterman, Larry R. Baylor, C. Stavrou, L. Appel, Amosov, J. Fessey, J. Flanagan, C. Paz Soldan, G. Kaveney, R. Young, Shimpei Futatani, U. Samm, R. Naish, P. Strand, E. Lascas Neto, S. Wheeler, Daisuke Shiraki, S. P. Hotchin, D. M. Witts, A. Cobalt, C. Waldon, Davide Galassi, I. Jenkins, S. Panja, C. Gurl, A. Lukin, R. Albanese, Andrea Pavone, A. Davies, J. Hawkins, N. Vianello, C. Besiliu, F. Domptail, Bruno Santos, Y. Li, T. Kaltiaisenaho, O. N. Kent, X. Litaudon, B. Lescinskis, M. Faitsch, Otto Asunta, F. Eriksson, Pericoli, M. Beldishevski, G.A. Rattá, C. D. Challis, Z. Ghani, M. Juvonen, A. C. C. Sips, João M. C. Sousa, Boris Breizman, P. Finburg, Henrik Sjöstrand, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, R. O. Dendy, B. Lepiavko, D. Croft, Goloborod'ko, A. V. Krasilnikov, M. Wischmeier, K. Gal, R. Ragona, Petter Ström, N. Parsons, G. Calabrò, Jean-Stéphane Joly, A. Capat, Linwei Li, T. Nakano, Paulo Rodrigues, L. Moser, João P. S. Bizarro, L. Piron, K. Pepperell, P. Aleynikov, Ambrogio Fasoli, S.-P. Pehkonen, Giuseppe Gorini, C. Taliercio, M. E. Puiatti, J. Svensson, H. R. Wilson, John Wright, S. Wiesen, O. Asztalos, R.V. Budny, A. Withycombe, P. Piovesan, Jonathan Gaspar, B. D. Stevens, P. Trimble, Vinodh Bandaru, F. S. Zaitsev, H. Sheikh, G. F. Matthews, Daniele Carnevale, K. Schoepf, L. McNamee, A. Czarnecka, P. Blanchard, Erik Fransson, J.P. Coad, Daniel Dunai, Carolina Björkas, A. Manzanares, M. Reich, A. Lahtinen, L. Giacomelli, Mirko Salewski, E. de la Cal, T. D. V. Haupt, T.T.C. Jones, M. Anghel, Kyriakos Hizanidis, J. M. Fontdecaba, Huber, A. Shaw, A. Cufar, A. Muraro, M. Clark, A. Meakins, Roland Sabot, A. Owen, K. Valerii, A. L. Esquisabel, Petr Vondracek, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, D. Terranova, M. Skiba, Konstantina Mergia, Frank Leipold, Francisco L. Tabarés, M. Zerbini, Ken W Bell, Marco Marinelli, Marco Riva, R. Martone, Bobkov, B. Magesh, A. Ash, Parail, M. Hook, Amanda Hubbard, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, Nick Walkden, R. Otin, P. Santa, P. Abreu, Demerdzhiev, Roberto Zanino, T. Spelzini, António J.N. Batista, P. G. Smith, L. Meneses, S. S. Medley, M. J. Mantsinen, K. Vasava, G. Gervasini, Surya K. Pathak, Kristel Crombé, G. Ellwood, P. Raj, Robert Hager, Ch. Linsmeier, C. Stokes, Petra Bilkova, M. Groth, G. Pautasso, C. R. Nobs, S. Sridhar, P. Chmielewski, David Hatch, Luca Boncagni, I. Balboa, C. Stan-Sion, Nobuyuki Asakura, R. McKean, L. Pigatto, João Figueiredo, Roberto Cavazzana, Juri Romazanov, M. Beurskens, C. Christopher Klepper, Maryna Chernyshova, O. Biletskyi, D. Karkinsky, A. Eksaeva, S. Dalley, Pasquale Gaudio, J. Benayas, J. Dankowski, S. Korolczuk, R. Buckingham, F. Parra Diaz, E. Wang, A. Cardinali, J. Naish, R. O. Pavlichenko, Kalle Heinola, Hiroshi Tojo, Miles M. Turner, Brett Chapman, A. Lyssoivan, F. Militello, E. Matveeva, T. Kobuchi, I. Ksiazek, P. Bohm, Cody Jones, W. Yanling, T. Jackson, P. Gohil, D. Alegre, Tim D. Bohm, F. Jaulmes, L. Zakharov, Peter J. Pool, C.G. Lowry, M. Passeri, D. Testa, Igor Lengar, A. Formisano, C. M. Roach, A. Hjalmarsson, A. Drenik, S. Meiter, William Tang, Carlos B. da Silva, Diogo R. Ferreira, P. J. Lomas, M. McHardy, Gunta Kizane, Angela Busse, S. Jachmich, Corneliu Porosnicu, Stanislas Pamela, Yavorskij, Eduardo Alves, Saskia Mordijck, Boniface Nkonga, J. Morris, Dean A. J. Whittaker, S. Ertmer, A. Hollingsworth, T. Barnard, R. Tatali, S. Reynolds, S. Mistry, Sergio Galeani, Torbjörn Hellsten, V.S. Neverov, David Dickinson, T. M. Huddleston, D. Baiao, F. Salzedas, D. Willoughby, M. Tripsky, Emmanuele Peluso, J. R. Harrison, C. Mazzotta, R. Zarins, M. Maslov, X. Bonnin, T. E. Gebhart, S. Fietz, K. Flinders, C. Hidalgo, Yann Corre, Aqsa Shabbir, A. B. Kukushkin, A. Shepherd, M.L. Walker, R. Clay, T. Vasilopoulou, Paolo Innocente, I. H. Coffey, P. Lalousis, Italo Predebon, R. Bravanec, P. Papp, D. Sytnykov, Ewa Pawelec, M. Bernert, G. Corrigan, Lutsenko, M. Romanelli, Gergely Papp, S. Romanelli, R. Salmon, J. Risner, M. T. Ogawa, A. M. Whitehead, E. Fable, H. Dabirikhah, Juan Manuel López, M. Turnyanskiy, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, J.-M. Noterdaeme, N. Hamilton, S. Minucci, I Wilson, A. Muir, A. V. Chankin, C. Clements, Matthias Hoelzl, Francesco Romanelli, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, S. Menmuir, K. Cave-Ayland, P. Curson, Richard Fridström, D. Grist, S. A. Robinson, Rodney Walker, Michael Loughlin, S. Aleiferis, W. Broeckx, Clayton E. Myers, S. F. Smith, D. Harting, W. Zwingmann, F. Binda, Mark R. Gilbert, Rajnikant Makwana, Richard Goulding, D. Van Eester, I. Voitsekhovitch, M. Bowden, I. Kodeli, Tomasz Czarski, Peter Hawkins, S. S. Henderson, M. Koeppen, D. Ricci, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, E. R. Solano, M. Stephen, P. Staniec, C. Appelbee, M. Newman, Susan Leerink, M. Nicassio, P. P. Pereira Puglia, M. Brombin, Wouter Tierens, C. Perez von Thun, Cédric Boulbe, Ya. I. Kolesnichenko, Taina Kurki-Suonio, S. Hallworth-Cook, R. P. Johnson, B. B. Carvalho, Anna Widdowson, Alessandro Pau, R. Price, B. Gonçalves, D. L. Keeling, Kazantzidis, Michael Fitzgerald, M. Hughes, K. D. Lawson, M. Brix, Raffaele Fresa, Juha Karhunen, S. Esquembri, K. Purahoo, Matthew Reinke, Gerd Meisl, M. Valovic, J. Horacek, D. King, H. Maier, Philipps, Kenji Tanaka, M. Kresina, M. Valisa, L. Omoregie, Gábor Cseh, Seppo Sipilä, Scott W. Mosher, Filippo Sartori, J. Kaniewski, Jan Weiland, Giuseppe Chitarin, Coccorese, A. R. Field, P. Beaumont, Robert Skilton, D. C. Campling, Mitul Abhangi, S. Villari, Roberta Lima Gomes, G. D. Ewart, S. Wray, A. Broslawski, A. Sinha, Roberto Paccagnella, S. Hollis, R. D. Wood, Albert Gutierrez-Milla, E. Jonasson, L.-G. Eriksson, R. Leach, L. W. Packer, M. Vuksic, H. J. Sun, C. Marchetto, Giuseppe Telesca, Dieter Leichtle, S. Cramp, Blaise Faugeras, M. Allinson, Yannis Kominis, R. Normanton, H. J. Leggate, Francesco Ghezzi, T. Schlummer, Tommaso Bolzonella, Jorge Ferreira, M. J. Walsh, C. Day, Philipp Drews, Steven J. Meitner, M. D. J. Bright, Per Petersson, D. L. Hillis, M. Webb, P. Wright, C. F. Maggi, B. Sieglin, A. Farahani, J. Strachan, M. Muraglia, M. Cecconello, F. Durodié, D. Callaghan, J. Waterhouse, R. J. Dumont, Sara Moradi, Patrick J. McCarthy, S. Feng, M. Balden, M. Kaufman, R. Warren, Brian Grierson, Harry M. Meyer, S.C. Bradnam, D. Kinna, A. Krivska, M. Lungu, E. Suchkov, A. Kantor, D. Conka, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, J. Callaghan, L. Barrera Orte, Tomas Markovic, Yu Gao, A. Lunniss, Z. Vizvary, E. Khilkevich, Th. Puetterich, Dmitry Matveev, E. Perelli Cippo, T. Owen, N. Imazawa, A. Silva, H. P. Summers, Norberto Catarino, Roberto Pasqualotto, P. Muscat, K. Keogh, Ricardo Magnus Osorio Galvao, P. Carman, M. Leyland, E. Veshchev, A. de Castro, M. Gruca, D. C. McDonald, L. Moreira, J. W. Banks, Sanjeev Ranjan, N. Sutton, Iris D. Young, Martin Imrisek, W. Zhang, J. K. Blackburn, Moiseenko, A. Parsloe, T. Loarer, D. N. Borba, S.J. Wukitch, D. P. Coster, J. Penzo, Jose Ramon Martin-Solis, P. Mantica, N. Bekris, M. G. O'Mullane, S. E. Dorling, Yunfeng Liang, S. Gulati, Roberto Ambrosino, J. Schweinzer, Cocilovo, D. Douai, M. A. Henderson, T. Suzuki, Gianluca Rubino, A. Peackoc, Yann Camenen, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, E. Tholerus, C. Sommariva, Prajapati, Yannick Marandet, F. Hasenbeck, Faa Federico Felici, M. Buckley, Kenneth Hammond, Daniele Milanesio, Cristian Ruset, Katsumichi Hoshino, D. Frigione, D. Chandra, I. Borodkina, P. Dinca, S. Brezinsek, J. Stallard, H. G. Esser, Matthew Sibbald, S. Knipe, Jorge Estrela da Silva, Kensaku Kamiya, P. A. Coates, J. C. Giacalone, Alfredo Pironti, Carvalho, D. D., Ferreira, D. R., Carvalho, P. J., Imrisek, M., Mlynar, J., Fernandes, H., and Formisano, A.
- Subjects
Computer science ,Feature extraction ,Image processing ,Computerized Tomography (CT) and Computed Radiography (CR) ,Plasma diagnostics - interferometry ,spectroscopy and imaging ,01 natural sciences ,Convolutional neural network ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Compass ,Plasma diagnostics-interferometry, spectroscopy and imaging ,0103 physical sciences ,Computer vision ,Instrumentation ,Mathematical Physics ,Jet (fluid) ,Contextual image classification ,010308 nuclear & particles physics ,business.industry ,Cognitive neuroscience of visual object recognition ,Plasma diagnostics - interferometry spectroscopy and imaging ,Tomography ,Artificial intelligence ,business ,plasma diagnostics - interferometry, spectroscopy and imaging - Abstract
Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so- called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.
- Full Text
- View/download PDF
112. Poloidal asymmetric flow and current relaxation of ballooned transport during I-phase in ASDEX Upgrade
- Author
-
Bruce D. Scott, P. Manz, M. Maraschek, Ulrich Stroth, G. Fuchert, M. Cavedon, G. Birkenmeier, G. D. Conway, A. Medvedeva, F. Mink, L. M. Shao, Manz, P, Birkenmeier, G, Fuchert, G, Cavedon, M, Conway, G, Maraschek, M, Medvedeva, A, Mink, F, Scott, B, Shao, L, Stroth, U, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Tokamak ,Turbulence ,media_common.quotation_subject ,Mechanics ,Plasma ,Condensed Matter Physics ,01 natural sciences ,Asymmetry ,010305 fluids & plasmas ,law.invention ,ASDEX Upgrade ,Physics::Plasma Physics ,law ,0103 physical sciences ,Relaxation (physics) ,Plasma diagnostics ,Current (fluid) ,Atomic physics ,010306 general physics ,plasma ,Computer Science::Databases ,media_common - Abstract
Turbulence driven poloidal asymmetric parallel flow and current perturbations are studied for tokamak plasmas of circular geometry. Whereas zonal flows can lead to in-out asymmetry of parallel flows and currents via the Pfirsch-Schlüter mechanism, ballooned transport can result in an up-down asymmetry due to the Stringer spin-up mechanism. Measurements of up-down asymmetric parallel current fluctuations occurring during the I-phase in ASDEX Upgrade are not responses to the equilibrium by the Pfirsch-Schlüter current, but can be interpreted as a response to strongly ballooned plasma transport coupled with the Stringer spin-up mechanism. A good agreement of the experimental measured limit-cycle frequencies during I-phase with the Stringer spin-up relaxation frequency is found.
- Full Text
- View/download PDF
113. Characterization of the Li-BES at ASDEX Upgrade
- Author
-
E. Wolfrum, G. Birkenmeier, Florian Laggner, R. Fischer, L. Guimarais, B. Kurzan, G. Veres, M. Willensdorfer, Friedrich Aumayr, D. Carralero, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Electron density ,Materials science ,Tokamak ,Plasma parameters ,Plasma ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,law.invention ,Nuclear Energy and Engineering ,ASDEX Upgrade ,Physics::Plasma Physics ,law ,0103 physical sciences ,High Energy Physics::Experiment ,Emission spectrum ,Atomic physics ,010306 general physics ,Transport phenomena ,Beam (structure) - Abstract
The lithium beam emission spectroscopy (Li-BES) is a powerful diagnostic to resolve the plasma edge density with high temporal and spatial resolution. The recent upgrades of the Li-BES at ASDEX Upgrade and the resulting gain in photon flux allow the plasma edge density to be determined with an advanced level of accuracy. Furthermore, electron density fluctuations are measured using Li-BES. The Li-BES capabilities and limitations to measure electron density profiles as well as density fluctuations are presented. It is well suited to characterize electron density turbulence in the scrape off layer (SOL) with decreasing sensitivity towards the plasma core. This is demonstrated by simulations as well as by comparisons with other diagnostics. The Li-BES is an appropriate tool to study transport phenomena in the SOL over a wide range of plasma parameters due to its robustness and routine usage.
- Full Text
- View/download PDF
114. The influence of finite ion temperature on plasma blob dynamics
- Author
-
P. Manz, Ulrich Stroth, D. Carralero, T. T. Ribeiro, S. H. Müller, G. Birkenmeier, H. W. Müller, Bruce D. Scott, E. Wolfrum, G. Fuchert, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Fusion ,Tokamak ,Dynamics (mechanics) ,Ion temperature ,Plasma ,Vorticity ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Computational physics ,Nuclear Energy and Engineering ,ASDEX Upgrade ,Physics::Plasma Physics ,law ,0103 physical sciences ,Electron temperature ,Atomic physics ,010306 general physics - Abstract
In the scrape-off layer of magnetically confined fusion devices, the ion temperature is at least as high as the electron temperature and usually even much higher. The effects of the finite ion temperature enhance the blob drive and modify the vorticity. Recently developed scaling laws for blob velocity independent of its size, based on the full drift-interchange-Alfven fluid equations are compared with recent experiments on the ASDEX Upgrade tokamak and gyrofluid simulations, showing remarkable agreement for the blob sizes and reasonable agreement for the blob velocities.
- Full Text
- View/download PDF
115. Pedestal structure and inter-ELM evolution for different main ion species in ASDEX Upgrade
- Author
-
M. Bernert, R. Fischer, G. Birkenmeier, M. G. Dunne, P. A. Schneider, F. Mink, E. Wolfrum, A. Kappatou, EUROfusion Mst Team, M. Cavedon, Friedrich Aumayr, Florian Laggner, M. Willensdorfer, Laggner, F, Wolfrum, E, Cavedon, M, Mink, F, Bernert, M, Dunne, M, Schneider, P, Kappatou, A, Birkenmeier, G, Fischer, R, Willensdorfer, M, Aumayr, F, EUROfusion MST1 Team, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Electron density ,Tokamak ,Electron ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Ion ,law.invention ,Pedestal ,Heat flux ,ASDEX Upgrade ,law ,0103 physical sciences ,Electron temperature ,Atomic physics ,010306 general physics ,plasma - Abstract
In tokamak plasmas with different main ion species, a change in confinement occurs, known as the isotope effect. Experiments comparing hydrogen (H), deuterium (D), and helium (4He) plasmas have been performed to identify processes that define the pedestal structure and evolution in between the crashes of edge localized modes (ELMs). The pedestal top electron densities and temperatures have been matched to compare the pedestal shape and stability. In the D and H discharges, the pedestal electron temperature profiles do not differ, whereas the density profile in H has shallower gradients. Furthermore, the heat flux across the pedestal in H is roughly a factor of two higher than in D. In 4He plasmas at similar stored energy, the pedestal top electron density is roughly a factor of 1.5 larger than in the references owing to the larger effective charge. The peeling-ballooning theory, which is independent of the main ion species mass, can sufficiently describe the pedestal stability in the hydrogenic plasmas. The inter-ELM pedestal evolution has the same sequence of recovery phases for all investigated species, giving evidence that similar mechanisms are acting in the pedestals. This is further supported by a similar evolution of the inter-ELM magnetic signature and the corresponding toroidal structure.
- Full Text
- View/download PDF
116. Magnetic configuration effects on the Reynolds stress in the plasma edge
- Author
-
Mirko Ramisch, Bruce D. Scott, B. Schmid, T. T. Ribeiro, P. Manz, A. Stegmeir, Nicolas Fedorczak, Klaus Hallatschek, S. Garland, and G. Birkenmeier
- Subjects
Physics ,Tokamak ,Turbulence ,Divertor ,Mechanics ,Reynolds stress ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Magnetic field ,Physics::Fluid Dynamics ,Physics::Plasma Physics ,law ,Residual stress ,Electric field ,0103 physical sciences ,Limiter ,010306 general physics - Abstract
Breaking the poloidal symmetry of the magnetic shear induced tilt of turbulent structures, by either divertor X-point resistivity or limiter positions, can lead to a finite (residual) contribution to the flux-surface averaged radial-binormal Reynolds stress. This residual stress supports or works against the radial electric field at the plasma edge of a tokamak. The impact of divertor geometry on the poloidal pattern of the Reynolds stress is studied by flux-coordinate-independent fluid simulations. Clear modifications of the Reynolds stress are found due to the magnetic shear in the confined region. The impact of different poloidal limiter positions on the radial electric field and the Reynolds stress is studied by means of magnetic field aligned gyrofluid simulations. Only if the limiter is close to the outer midplane can its position have a substantial effect on the radial electric field.
- Full Text
- View/download PDF
117. Turbulent transport across shear layers in magnetically confined plasmas
- Author
-
Ulrich Stroth, P. Manz, G. Birkenmeier, Mirko Ramisch, H. W. Müller, Bernhard Nold, T. T. Ribeiro, G. Fuchert, and Bruce D. Scott
- Subjects
Physics::Fluid Dynamics ,Physics ,Shear layer ,Break-Up ,Shear (geology) ,Turbulence ,Plasma turbulence ,Plasma diagnostics ,Statistical physics ,Plasma ,Mechanics ,Condensed Matter Physics - Abstract
Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.
- Full Text
- View/download PDF
118. Magnetic field dependence of the blob dynamics in the edge of ASDEX upgrade L-mode plasmas
- Author
-
B. Sieglin, G. Birkenmeier, G. Fuchert, E. Wolfrum, P. Manz, D. Carralero, T. Kobayashi, R. Fischer, Ulrich Stroth, M. Willensdorfer, Florian Laggner, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,chemistry.chemical_element ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Plasma ,Edge (geometry) ,Condensed Matter Physics ,7. Clean energy ,Square (algebra) ,Magnetic field ,Nuclear Energy and Engineering ,chemistry ,ASDEX Upgrade ,Physics::Plasma Physics ,Lithium ,Emission spectrum ,Atomic physics ,Beam (structure) - Abstract
The magnetic field dependence of intermittently expelled density filaments (blobs) is investigated in the scrape-off layer of ASDEX Upgrade low confinement (L-mode) plasmas. It is demonstrated that lithium beam emission spectroscopy can be used to determine the frequency, radial size and velocity of the blobs. The measured radial blob sizes depend only weakly on magnetic field B. Normalizing the blob sizes to the drift parameter ρs ∝ B−1 results in a large variation beneficial for a quantitative comparison with theoretical blob scaling laws. The blob velocity scales inversely proportional to the square of the blob size in agreement with analytic models for blobs in the sheath-connected regime. The measurements point towards an influence of finite ion temperature on radial blob transport.
- Full Text
- View/download PDF
119. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations.
- Author
-
M. Willensdorfer, E. Strumberger, W. Suttrop, M. Dunne, R. Fischer, G. Birkenmeier, D. Brida, M. Cavedon, S.S. Denk, V. Igochine, L. Giannone, A. Kirk, J. Kirschner, A. Medvedeva, T. Odstrčil, D.A. Ryan, Team, The ASDEX Upgrade, and Team, The EUROfusion MST1
- Subjects
KINK instability ,MAGNETIC fields ,MAGNETOHYDRODYNAMICS ,ELECTRICAL conductors ,PLASMA devices - Abstract
In low-collisionality scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
120. Turbulence characteristics of the I-mode confinement regime in ASDEX Upgrade.
- Author
-
P. Manz, T. Happel, F. Ryter, M. Bernert, G. Birkenmeier, G.D. Conway, M. Dunne, L. Guimarais, P. Hennequin, A. Hetzenecker, C. Honoré, P. Lauber, M. Maraschek, V.E. Nikolaeva, D. Prisiazhniuk, U. Stroth, E. Viezzer, and Team2, The ASDEX Upgrade
- Subjects
TURBULENCE ,PLASMA confinement ,GEODESIC flows ,PERTURBATION theory ,WAVELETS (Mathematics) - Abstract
Besides strong geodesic acoustic mode (GAM) activity, turbulence in the I-mode confinement regime of ASDEX Upgrade exhibits two prominent features, the weakly coherent mode (WCM) and strongly intermittent solitary density perturbations. The nonlinear interaction between these structures is studied in detail by means of a conditional averaged wavelet-bicoherence analysis. The wavelet analysis reveals that these density perturbations are at the WCM frequency. The GAM is coupled to all frequency scales of the velocity fluctuations via a modulational instability. The WCM shows coupling to higher frequencies prior to the bursts, indicating a process resembling wave-steepening. A possible mechanism for the generation of such solitary density perturbations by a Korteweg–de Vries-like nonlinearity is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
121. Recent progress towards a quantitative description of filamentary SOL transport.
- Author
-
D. Carralero, M. Siccinio, M. Komm, S.A. Artene, F.A. D’Isa, J. Adamek, L. Aho-Mantila, G. Birkenmeier, M. Brix, G. Fuchert, M. Groth, T. Lunt, P. Manz, J. Madsen, S. Marsen, H.W. Müller, U. Stroth, H.J. Sun, N. Vianello, and M. Wischmeier
- Subjects
PLASMA boundary layers ,TOKAMAKS ,NUCLEAR physics ,SIMULATION methods & models ,STATISTICAL correlation - Abstract
A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath-limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below 5 eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed, associated with the shoulder formation. A common SOL transport framework is proposed to account for all these results, and their potential implications for future generation devices are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
122. Interplay between turbulence, neoclassical and zonal flows during the transition from low to high confinement mode at ASDEX Upgrade.
- Author
-
M. Cavedon, T. Pütterich, E. Viezzer, G. Birkenmeier, T. Happel, F. M. Laggner, P. Manz, F. Ryter, U. Stroth, and Team, The ASDEX Upgrade
- Subjects
TURBULENCE ,TOKAMAKS ,TEMPERATURE effect ,OSCILLATIONS ,PLASMA confinement - Abstract
The spatio-temporal interplay between turbulence, mean and zonal flows has been investigated at the L–H and H–L transitions in the edge region of the ASDEX Upgrade tokamak. Close to both transitions, an intermediate phase (I-phase) characterized by ‘limit cycle like oscillations’ (LCOs) is observed in which periodic bursts of turbulence correlate with flow reduction and relaxation of gradients. During the I-phase, the velocity is dominated by the mean flows indicating that turbulence driven flows are small. Periodic dithers between L-mode and the phases with LCOs are also observed just before the H-mode onset where the edge density and temperature profile gradients evolve on similar timescale as the flows. Thus connection between mean and flows holds during the all evolution from L-mode to H-mode demonstrating the fundamental role of the neoclassical flows in the L–H transition physics. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
123. Impact of lithium pellets on plasma performance in the ASDEX Upgrade all-metal-wall tokamak.
- Author
-
P.T. Lang, R. Maingi, D.K. Mansfield, R.M. McDermott, R. Neu, E. Wolfrum, R. Arredondo Parra, M. Bernert, G. Birkenmeier, A. Diallo, M. Dunne, E. Fable, R. Fischer, B. Geiger, A. Hakola, V. Nikolaeva, A. Kappatou, F. Laggner, M. Oberkofler, and B. Ploeckl
- Subjects
LITHIUM ,PLASMA gases ,TOKAMAKS ,TUNGSTEN ,FUSION reactors - Abstract
The impact of lithium (Li) on plasma performance was investigated at the ASDEX Upgrade tokamak, which features a full tungsten wall. Li pellets containing 1.6 × 10
20 Li atoms were launched with a speed of 600 m s−1 to achieve deep penetration into the plasma and minimize the impact on the first wall. Homogeneous transient Li concentrations in the plasma of up to 15% were established. The Li sustainment time in the plasma decreased with an increasing heating power from 150 to 40 ms. Due to the pellet rate being restricted to 2 Hz, no Li pile-up could take place. No significant positive impact on plasma properties, as reported from other tokamak devices, could be found; the Li pellets rather caused a small reduction in plasma energy, mainly due to enhanced radiation. Due to pellet injection, a short-lived Li layer was formed on the plasma-facing components, which lasted a few discharges and led to moderately beneficial effects during plasma start-up. Most pellets were found to trigger type-I ELMs, either by their direct local perturbation or indirectly by the altered edge conditions; however, reliability was less than 100%. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
124. Magnetic structure and frequency scaling of limit-cycle oscillations close to L- to H-mode transitions.
- Author
-
G. Birkenmeier, M. Cavedon, G.D. Conway, P. Manz, U. Stroth, R. Fischer, G. Fuchert, T. Happel, F.M. Laggner, M. Maraschek, A. Medvedeva, V. Nikolaeva, D. Prisiazhniuk, T. Pütterich, F. Ryter, L.M. Shao, M. Willensdorfer, E. Wolfrum, H. Zohm, and Team, the ASDEX Upgrade
- Subjects
- *
OSCILLATIONS , *PLASMA gases , *FUSION reactor divertors , *TOKAMAKS , *MAGNETIC fields , *PLASMA currents - Abstract
Limit-cycle oscillations (LCOs) close to the power threshold of L- to H-mode transitions are investigated in plasmas of ASDEX Upgrade. During this phase, referred to as I-phase, a strong magnetic activity in the poloidal magnetic field with an up–down asymmetry is found. In some cases, the regular LCOs during I-phase transition smoothly into a phase with intermittent bursts which have similar properties to type-III edge localised modes (ELMs). Indications of precursors during the intermittent phase as well as in the regular LCO phase point to a common nature of the I-phase and type-III ELMs. The LCO frequency measured in a set of discharges with different plasma currents and magnetic fields scales as . [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
125. High frequency magnetic fluctuations correlated with the inter-ELM pedestal evolution in ASDEX Upgrade.
- Author
-
F M Laggner, E Wolfrum, M Cavedon, F Mink, E Viezzer, M G Dunne, P Manz, H Doerk, G Birkenmeier, R Fischer, S Fietz, M Maraschek, M Willensdorfer, F Aumayr, Team, the EUROfusion MST1, and Team, the ASDEX Upgrade
- Subjects
ELECTRON density ,FLUCTUATIONS (Physics) ,ELECTRON temperature ,PLASMA flow ,MAGNETISM - Abstract
In order to understand the mechanisms that determine the structure of the high confinement mode (H-mode) pedestal, the evolution of the plasma edge electron density and temperature profiles between edge localised modes (ELMs) is investigated. The onset of radial magnetic fluctuations with frequencies above 200 kHz is found to correlate with the stagnation of the electron temperature pedestal gradient. During the presence of these magnetic fluctuations the gradients of the edge electron density and temperature are clamped and stable against the ELM onset. The detected magnetic fluctuation frequency is analysed for a variety of plasma discharges with different electron pressure pedestals. It is shown that the magnetic fluctuation frequency scales with the neoclassically estimated velocity at the plasma edge. This points to a location of the underlying instability in the gradient region. Furthermore, the magnetic signature of these fluctuations indicates a global mode structure with toroidal mode numbers of approximately 10. The fluctuations are also observed on the high field side with significant amplitude, indicating a mode structure that is symmetric on the low field side and high field side. The associated fluctuations in the current on the high field side might be attributed to either a strong peeling part or the presence of non-adiabatic electron response. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
126. Characterization of the blob generation region and blobby transport in a stellarator.
- Author
-
G Fuchert, G Birkenmeier, M Ramisch, and U Stroth
- Subjects
- *
STELLARATORS , *MAGNETIC fields , *BINARY large objects , *TOKAMAKS , *GEOMETRIC analysis - Abstract
Filaments of increased pressure (‘blobs’) in the scrape-off layer of toroidally confined magnetized plasmas are studied in the context of fusion research due to their relevance for confinement and wall safety. Analytical models in simple toroidal magnetic field geometries have proven useful to get a quantitative understanding of blob dynamics in tokamaks. However, their direct applicability to the more complicated stellarator geometry is far less studied. The experiments presented here show that in the stellarator TJ-K blobs are field-aligned structures occurring in scrape-off layer regions of negative mean normal curvature, which is in agreement with common blob models. Furthermore, it is shown that in TJ-K, in accordance with findings from tokamaks, blobs account for a significant fraction of the turbulent scrape-off layer transport of the order of several tens of percent. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
127. On the role of the edge density profile for the L–H transition power threshold in ASDEX Upgrade.
- Author
-
L M Shao, E Wolfrum, F Ryter, G Birkenmeier, F M Laggner, E Viezzer, R Fischer, M Willensdorfer, B Kurzan, T Lunt, and Team, the ASDEX Upgrade
- Subjects
TUNGSTEN ,GRAPHITE ,ELECTRIC discharges ,ELECTRIC field effects ,MAGNETIC field effects - Abstract
The L–H transition power threshold () in full tungsten (W) wall discharges is lower by 25% compared to those with graphite (C) mix tungsten walls in ASDEX Upgrade (Ryter et al 2013 Nucl. Fusion 53 113003). The lower power threshold in the full tungsten wall discharges has been found to correlate with higher edge density as well as steeper edge density gradient. An estimate of the minimum in the neoclassical radial electric field well inside the separatrix yields a constant value for all analyzed L–H transitions at fixed toroidal magnetic field (). The decrease of the threshold power is explained by the steeper edge density gradient in the discharges with full tungsten wall. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
128. Geodesic oscillations and the weakly coherent mode in the I-mode of ASDEX Upgrade.
- Author
-
P. Manz, P. Lauber, V.E. Nikolaeva, T. Happel, F. Ryter, G. Birkenmeier, A. Bogomolov, G.D. Conway, M.E. Manso, M. Maraschek, D. Prisiazhniuk, and E. Viezzer
- Subjects
GEODESICS ,OSCILLATIONS ,TURBULENCE ,ENERGY transfer ,FLUCTUATIONS (Physics) - Abstract
Density fluctuations in I-mode discharges in ASDEX Upgrade are studied. The I-mode specific weakly coherent mode (WCM) appears at the transition from the L to I-mode. The WCM but also the turbulence in general are strongly modulated by a low frequency mode which can be related to the geodesic acoustic mode (GAM). The GAM induces an energy transfer away from the central WCM frequency, indicating an underlying instability responsible for the WCM. During the I-mode magnetic fluctuations close to the WCM frequency are intensified, which can be assigned to the geodesic Alfvénic oscillation. The geodesic Alfvénic oscillation is already present in the L-mode, and does not follow changes of frequency of the WCM, therefore it is not responsible for the WCM. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
129. ELM control at the L → H transition by means of pellet pacing in the ASDEX Upgrade and JET all-metal-wall tokamaks.
- Author
-
P T Lang, H Meyer, G Birkenmeier, A Burckhart, I S Carvalho, E Delabie, L Frassinetti, G Huijsmans, G Kocsis, A Loarte, C F Maggi, M Maraschek, B Ploeckl, F Rimini, F Ryter, S Saarelma, T Szepesi, E Wolfrum, and Contributors, ASDEX Upgrade Team and J. E. T.
- Subjects
TOKAMAKS ,PLASMA confinement ,MAGNETOHYDRODYNAMICS ,PLASMA waves - Abstract
In ITER, pellets are used for ELM pacing and fueling. More importantly, ELM control and in particular control of the first ELM needs to be demonstrated in the non-nuclear phase of ITER during operation in H or He. Whilst D pellets have been established as an ELM control technique in the stationary phase with D target plasmas in devices with C as plasma-facing component, the behavior of other isotopes in non-stationary phases are not so well known. Here, we report on new pellet triggering experiments in ASDEX Upgrade and JET that mimic specific ITER operating scenarios. Both machines are equipped with an all-metal wall; recent investigations have shown that pellet triggering and pacing become more intricate when an all-metal wall surface is employed. In both machines, ELM triggering has been shown to occur after injection of D pellets into D plasmas during extended ELM-free phases, often following the L → H transition. In both devices the pellets are found to induce ELMs under conditions far from the stability boundary for type-I ELMs. Near the L → H transition, induced ELMs in some cases are more likely to have type-III rather than type-I characteristics. Furthermore, in ASDEX Upgrade this study was conducted during L → H transitions in the current ramp-up phase as envisaged for ITER. In addition, the pellet’s ELM trigger potential has been proven in ASDEX Upgrade with a correct isotopic compilation for the non-nuclear phase in ITER, viz. H pellets into either He or H plasmas.Results from this study are encouraging since they have demonstrated the pellets’ potential to provoke ELMs even under conditions that are quite far from the stability boundaries attributed to the occurrence of spontaneous ELMs. However, with the recent change from carbon to an all-metal plasma-facing component, examples have been found in both machines where pellets failed to establish ELM control under conditions where this would be expected and needed. Consequently, a major task of future investigations in this field will be to shed more light on the underlying physics of the pellet ELM triggering process to allow sound predictions for ITER. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
130. Filament transport, warm ions and erosion in ASDEX Upgrade L-modes.
- Author
-
G. Birkenmeier, P. Manz, D. Carralero, F.M. Laggner, G. Fuchert, K. Krieger, H. Maier, F. Reimold, K. Schmid, R. Dux, T. Pütterich, M. Willensdorfer, E. Wolfrum, and Team, The ASDEX Upgrade
- Subjects
- *
TOKAMAKS , *FIBERS , *PLASMA boundary layers , *EMISSION spectroscopy , *ION temperature , *NUCLEAR fusion - Abstract
The dynamics of blob filaments are investigated in the scrape-off layer of ASDEX Upgrade by means of lithium beam emission spectroscopy. A comparison of the measurements in L-mode with a recently developed analytical blob model based on a drift-interchange-Alfvén fluid model indicates an influence of a finite ion temperature on the blob dynamics which has typically been neglected in other blob models. The blob dynamics agree well with the sheath-connected regime at lower plasma densities, and inertial effects play only a minor role. At higher densities, a transition into another regime with large blob amplitudes and increased transport is found. This points to a prominent role of blob transport at higher Greenwald fractions. On the basis of the measured blob properties, the erosion on plasma facing components is estimated. For pure deuterium plasmas, the high ion temperatures of blobs lead to a dominant erosion induced by blobs. However, if an impurity concentration of 1% is taken into account, the blob-induced erosion plays a minor role and background plasma parameters determine the total gross erosion. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
131. The influence of finite ion temperature on plasma blob dynamics.
- Author
-
P Manz, G Birkenmeier, U Stroth, D Carralero, H W Müller, B D Scott, T T Ribeiro, E Wolfrum, G Fuchert, and S H Müller
- Subjects
- *
ION temperature , *BINARY large objects , *ELECTRON temperature , *VORTEX motion , *SCALING laws (Nuclear physics) , *PLASMA boundary layers - Abstract
In the scrape-off layer of magnetically confined fusion devices, the ion temperature is at least as high as the electron temperature and usually even much higher. The effects of the finite ion temperature enhance the blob drive and modify the vorticity. Recently developed scaling laws for blob velocity independent of its size, based on the full drift-interchange-Alfvén fluid equations are compared with recent experiments on the ASDEX Upgrade tokamak and gyrofluid simulations, showing remarkable agreement for the blob sizes and reasonable agreement for the blob velocities. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
132. An experimental investigation of the high density transition of the scrape-off layer transport in ASDEX Upgrade.
- Author
-
D. Carralero, G. Birkenmeier, H.W. Müller, P. Manz, P. deMarne, S.H. Müller, F. Reimold, U. Stroth, M. Wischmeier, E. Wolfrum, and Team, The ASDEX Upgrade
- Subjects
- *
PLASMA boundary layers , *FUSION reactor divertors , *LANGMUIR probes , *L-mode plasma confinement , *PLASMA instabilities - Abstract
A multidiagnostic approach, utilizing Langmuir probes in the midplane, X-point and divertor walls, along with lithium beam and infrared measurements is employed to evaluate the evolution of the scrape-off layer (SOL) of ASDEX Upgrade across the L-mode density transition leading to the formation of a density shoulder. The flattening of the SOL density profiles is linked to a regime change of filaments, which become faster and larger, and to a similar flattening of the q∥ profile. This transition is related to the beginning of outer divertor detachment and leads to the onset of a velocity shear layer in the SOL. Experimental measurements are in good agreement with several filament models which describe the process as a transition from conduction to convection-dominated SOL perpendicular transport caused by an increase of parallel collisionality. These results could be of great relevance since both ITER and DEMO will feature detached divertors and densities largely over the transition values, and might therefore exhibit convective transport levels different to those observed typically in present-day devices. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
133. Blob properties in L- and H-mode from gas-puff imaging in ASDEX upgrade.
- Author
-
G Fuchert, G Birkenmeier, D Carralero, T Lunt, P Manz, H W Müller, B Nold, M Ramisch, V Rohde, and U Stroth
- Subjects
- *
PHASE transitions , *H-mode plasma confinement , *L-mode plasma confinement , *PLASMA boundary layers , *BINARY large objects , *TOKAMAKS - Abstract
Blob properties are studied in the scrape-off layer of the tokamak ASDEX Upgrade with a fast camera. The gas-puff imaging technique is used to investigate the detection rate as well as the blob size and velocity scaling. The experiments were performed in L- and H-mode phases of the same discharges to study the change in blob properties after the L-H transition. In both regimes the detection rate is of the order of a few thousand blobs per second, which is compatible with the picture of blob generation by edge micro instabilities. The blob size increases in H-mode, while the radial velocity decreases slightly. The changes are, however, not indicating a drastic change in the blob dynamics in both phases. The experimentally found blob properties were compared to predictions from a novel blob model including effects due to a finite ion temperature, which should be more appropriate for the conditions in the SOL of fusion plasmas. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
134. Generation and heating of toroidally confined overdense plasmas with 2.45?GHz microwaves.
- Author
-
A Kohn, G Birkenmeier, E Holzhauer, M Ramisch, and U Stroth
- Subjects
- *
TOROIDAL harmonics , *PLASMA gases , *MICROWAVES , *CYCLOTRONS , *LANGMUIR probes , *AMBER , *RESONANCE , *ELECTROMAGNETIC waves - Abstract
In the stellarator TJ-K, overdense low-temperature plasmas are created by means of microwaves at 2.45 GHz. Extensive studies have been carried out to understand the heating process. The plasma breakdown at the cyclotron resonance layer has been directly observed with a multiple Langmuir probe array. Profile measurements indicate power deposition at the plasma boundary, where the upper hybrid resonance (UHR) is located. This result is confirmed by full-wave simulations which emphasize the importance of the vacuum vessel to increase the absorbed microwave power due to multiple reflections. Further indications for heating at the UHR layer are found by measurements of the wave electric field of the incident microwave and by power-modulation experiments. In contrast to similar experiments, no indication for heating by electron Bernstein waves was found. [ABSTRACT FROM AUTHOR]
- Published
- 2010
135. Validation of the synthetic model for the imaging heavy ion beam probe at the ASDEX Upgrade tokamak (invited).
- Author
-
Oyola P, Birkenmeier G, Lindl H, Galdon-Quiroga J, Rueda-Rueda J, Viezzer E, Rodriguez-Gonzalez A, Hidalgo-Salaverri J, Garcia-Munoz M, Tal B, Anda G, Kalis J, Lunt T, Refy D, and Videla-Trevin M
- Abstract
Recent experiments at the ASDEX Upgrade tokamak have provided the first ever measurements from the imaging heavy-ion beam probe. In this work, we show that the developed simulation framework can reproduce qualitatively the measurement's observed shape and position. Quantitatively, we demonstrate that the model reproduces, within the experimental uncertainties, the observed signal levels. A detailed explanation of the synthetic model is presented, along with the calibration of the optical setup that reproduces the measurements., (© 2024 Author(s). Published under an exclusive license by AIP Publishing.)
- Published
- 2024
- Full Text
- View/download PDF
136. First measurements of an imaging heavy ion beam probe at the ASDEX Upgrade tokamak.
- Author
-
Galdon-Quiroga J, Birkenmeier G, Oyola P, Lindl H, Rodriguez-Gonzalez A, Anda G, Garcia-Munoz M, Herrmann A, Kalis J, Kaunert K, Lunt T, Refy D, Rohde V, Rueda-Rueda J, Sochor M, Tal B, Teschke M, Videla M, Viezzer E, and Zoletnik S
- Abstract
The imaging heavy ion beam probe (i-HIBP) diagnostic has been successfully commissioned at ASDEX Upgrade. The i-HIBP injects a primary neutral beam into the plasma, where it is ionized, leading to a fan of secondary (charged) beams. These are deflected by the magnetic field of the tokamak and collected by a scintillator detector, generating a strike-line light pattern that encodes information on the density, electrostatic potential, and magnetic field of the plasma edge. The first measurements have been made, demonstrating the proof-of-principle of this diagnostic technique. A primary beam of 85/87Rb has been used with energies ranging between 60 and 72 keV and extracted currents up to 1.5 mA. The first signals have been obtained in experiments covering a wide range of parameter spaces, with plasma currents (Ip) between 0.2 and 0.8 MA and on-axis toroidal magnetic field (Bt) between 1.9 and 2.7 T. Low densities appear to be critical for the performance of the diagnostic, as signals are typically observed only when the line integrated density is below 2.0-3.0 × 1019 m-2 in the central interferometer chord, depending on the plasma shape. The strike line moves as expected when Ip is ramped, indicating that current measurements are possible. Additionally, clear dynamics in the intensity of the strike line are often observed, which might be linked to changes in the edge profile structure. However, the signal-to-background ratio of the signals is hampered by stray light, and the image guide degradation is due to neutron irradiation. Finally, simulations have been carried out to investigate the sensitivity of the expected signals to plasma density and temperature. The results are in qualitative agreement with the experimental observations, suggesting that the diagnostic is almost insensitive to fluctuations in the temperature profile, while the signal level is highly determined by the density profile due to the beam attenuation., (© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
137. Implementation of synthetic fast-ion loss detector and imaging heavy ion beam probe diagnostics in the 3D hybrid kinetic-MHD code MEGA.
- Author
-
Oyola P, Gonzalez-Martin J, Garcia-Munoz M, Galdon-Quiroga J, Birkenmeier G, Viezzer E, Dominguez-Palacios J, Rueda-Rueda J, Rivero-Rodriguez JF, and Todo Y
- Abstract
A synthetic fast-ion loss (FIL) detector and an imaging Heavy Ion Beam Probe (i-HIBP) have been implemented in the 3D hybrid kinetic-magnetohydrodynamic code MEGA. First synthetic measurements from these two diagnostics have been obtained for neutral beam injection-driven Alfvén Eigenmode (AE) simulated with MEGA. The synthetic FILs show a strong correlation with the AE amplitude. This correlation is observed in the phase-space, represented in coordinates (P
ϕ , E), being toroidal canonical momentum and energy, respectively. FILs and the energy exchange diagrams of the confined population are connected with lines of constant E' , a linear combination of E and Pϕ . First i-HIBP synthetic signals also have been computed for the simulated AE, showing displacements in the strike line of the order of ∼1 mm, above the expected resolution in the i-HIBP scintillator of ∼100 μm.- Published
- 2021
- Full Text
- View/download PDF
138. In Vitro Cytotoxicity of Zinc Fructoborate, a Novel Zinc-Boron Active Natural Complex.
- Author
-
Oancea CN, Cîmpean A, Ion R, Neamţu J, Biţă A, Scorei IR, Neamţu AS, Rogoveanu OC, Zaharie SI, and Birkenmeier G
- Abstract
In recent years, the role of zinc in biological systems has been a subject of intense research. Zinc is required for multiple metabolic processes as a structural, regulatory, or catalytic ion. The objective of this study, was to assess the toxicity profile of a newly synthesized zinc-boron molecule on cultured cells. Zinc fructoborate, at different levels of concentration, was tested for its impact on the Vero kidney cell line (ATCC® CCL-81™) using the MTT assay. The compound exhibited a low cytotoxic effect on the cell line. Thus, our study demonstrates that the zinc fructoborate could become a promising dietary supplement molecule.
- Published
- 2018
- Full Text
- View/download PDF
139. Correction: The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat.
- Author
-
Kurz S, Thieme R, Amberg R, Groth M, Jahnke HG, Pieroh P, Horn LC, Kolb M, Huse K, Platzer M, Volke D, Dehghani F, Buzdin A, Engel K, Robitzki A, Hoffmann R, Gockel I, and Birkenmeier G
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0189514.].
- Published
- 2018
- Full Text
- View/download PDF
140. Comparative Examination of Temporal Glyoxalase 1 Variations Following Perforant Pathway Transection, Excitotoxicity, and Controlled Cortical Impact Injury.
- Author
-
Pieroh P, Wagner DC, Alessandri B, Dabbagh Nazari M, Ehrlich A, Ghadban C, Hobusch C, Birkenmeier G, and Dehghani F
- Subjects
- Animals, Astrocytes drug effects, Astrocytes metabolism, Brain drug effects, Brain physiopathology, Hippocampus drug effects, Hippocampus metabolism, Immunohistochemistry methods, Neurons drug effects, Neurons metabolism, Perforant Pathway physiopathology, Rats, Sprague-Dawley, Brain Injuries physiopathology, Lactoylglutathione Lyase metabolism, Perforant Pathway drug effects, Pyruvaldehyde pharmacology
- Abstract
Following acute neuronal lesions, metabolic imbalance occurs, the rate of glycolysis increases, and methylglyoxal (MGO) forms, finally leading to metabolic dysfunction and inflammation. The glyoxalase system is the main detoxification system for MGO and is impaired following excitotoxicity and stroke. However, it is not known yet whether alterations of the glyoxalase system are also characteristic for other neuronal damage models. Neuronal damage was induced in organotypic hippocampal slice cultures by transection of perforant pathway (PPT; 5 min to 72 h) and N-methyl-D-aspartate (NMDA; 50 μM for 4 h) or in vivo after controlled cortical impact (CCI) injury (2 h to 14 days). Temporal and spatial changes of glyoxalase I (GLO1) were investigated by Western blot analyses and immunohistochemistry. In immunoblot, the GLO1 protein content was not significantly affected by PPT at all investigated time points. As described previously, NMDA treatment led to a GLO1 increase 24 and 48 h after the lesion, whereas PPT increased GLO1 immunoreactivity within neurons only at 48 h postinjury. Immunohistochemistry of brain tissue subjected to CCI unveiled positive GLO1 immunoreactivity in neurons and astrocytes at 1 and 3 days after injury. Two hours and 14 days after CCI, no GLO1 immunoreactivity was observed. GLO1 protein content changes are associated with excitotoxicity but seemingly not to fiber transection. Cell-specific changes in GLO1 immunoreactivity after different in vitro and in vivo lesion types might be a common phenomenon in the aftermath of neuronal lesions.
- Published
- 2018
- Full Text
- View/download PDF
141. The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat.
- Author
-
Kurz S, Thieme R, Amberg R, Groth M, Jahnke HG, Pieroh P, Horn LC, Kolb M, Huse K, Platzer M, Volke D, Dehghani F, Buzdin A, Engel K, Robitzki A, Hoffmann R, Gockel I, and Birkenmeier G
- Subjects
- Animals, Heterografts, Humans, Models, Animal, Mole Rats, Neoplasms pathology, PTEN Phosphohydrolase metabolism, Phosphatidylinositol 3-Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Smad Proteins metabolism, Neoplasms prevention & control, Pregnancy-Associated alpha 2-Macroglobulins physiology
- Abstract
Cancer resistance is a major cause for longevity of the naked mole-rat. Recent liver transcriptome analysis in this animal compared to wild-derived mice revealed higher expression of alpha2-macroglobulin (A2M) and cell adhesion molecules, which contribute to the naked mole-rat's cancer resistance. Notably, A2M is known to dramatically decrease with age in humans. We hypothesize that this might facilitate tumour development. Here we found that A2M modulates tumour cell adhesion, migration and growth by inhibition of tumour promoting signalling pathways, e.g. PI3K / AKT, SMAD and up-regulated PTEN via down-regulation of miR-21, in vitro and in tumour xenografts. A2M increases the expression of CD29 and CD44 but did not evoke EMT. Transcriptome analysis of A2M-treated tumour cells, xenografts and mouse liver demonstrated a multifaceted regulation of tumour promoting signalling pathways indicating a less tumorigenic environment mediated by A2M. By virtue of these multiple actions the naturally occurring A2M has strong potential as a novel therapeutic agent.
- Published
- 2017
- Full Text
- View/download PDF
142. Ethyl pyruvate does not require microglia for mediating neuroprotection after excitotoxic injury.
- Author
-
Pieroh P, Wagner DC, Ghadban C, Birkenmeier G, and Dehghani F
- Subjects
- Animals, Astrocytes drug effects, Astrocytes pathology, Astrocytes physiology, Cicatrix drug therapy, Cicatrix pathology, Cicatrix physiopathology, Hippocampus drug effects, Hippocampus pathology, Hippocampus physiopathology, Microglia pathology, Microglia physiology, N-Methylaspartate toxicity, Neurons pathology, Neurons physiology, Rats, Sprague-Dawley, Tissue Culture Techniques, Microglia drug effects, Neurons drug effects, Neuroprotective Agents pharmacology, Pyruvates pharmacology
- Abstract
Aims: Ethyl pyruvate (EP) mediates protective effects after neuronal injury. Besides a direct conservation of damaged neurons, the modulation of indigenous glial cells has been suggested as one important mechanism for EP-related neuroprotection. However, the specific contribution of glial cells is still unknown., Methods: Organotypic hippocampal slice cultures (OHSC) were excitotoxically lesioned by 50 μmol/L N-methyl-D-aspartate (NMDA, for 4 hours) or left untreated. In an additional OHSC subset, microglia was depleted using the bisphosphonate clodronate (100 μg/mL) before lesion. After removal of NMDA, EP containing culture medium (0.84 μmol/L, 8.4 μmol/L, 42 μmol/L, 84 μmol/L, 168 μmol/L) was added and incubated for 72 hours. OHSC were stained with propidium iodide to visualize degenerating neurons and isolectin IB
4 -FITC to identify microglia. Effects of EP at concentrations of 0.84, 8.4, and 84 μmol/L (0-48 hours) were analyzed in the astrocytic scratch wound assay., Results: EP significantly reduced neurodegeneration following induced excitotoxicity except for 168 μmol/L. For 84 μmol/L, a reduction in the microglia cells was observed. Microglia depletion did not affect neuronal survival after EP treatment. EP decelerated astrocytic wound closure at 48 hours after injury., Conclusion: EP-mediated neuroprotection seems to be mediated by astrocytes and/or neurons., (© 2017 John Wiley & Sons Ltd.)- Published
- 2017
- Full Text
- View/download PDF
143. Unraveling the gut microbiome of the long-lived naked mole-rat.
- Author
-
Debebe T, Biagi E, Soverini M, Holtze S, Hildebrandt TB, Birkemeyer C, Wyohannis D, Lemma A, Brigidi P, Savkovic V, König B, Candela M, and Birkenmeier G
- Subjects
- Animals, Computational Biology methods, Metagenome, Metagenomics methods, RNA, Ribosomal, 16S, Gastrointestinal Microbiome, Longevity, Mole Rats
- Abstract
The naked mole-rat (Heterocephalus glaber) is a subterranean mouse-sized African mammal that shows astonishingly few age-related degenerative changes and seems to not be affected by cancer. These features make this wild rodent an excellent model to study the biology of healthy aging and longevity. Here we characterize for the first time the intestinal microbial ecosystem of the naked mole-rat in comparison to humans and other mammals, highlighting peculiarities related to the specific living environment, such as the enrichment in bacteria able to utilize soil sulfate as a terminal electron acceptor to sustain an anaerobic oxidative metabolism. Interestingly, some compositional gut microbiota peculiarities were also shared with human gut microbial ecosystems of centenarians and Hadza hunter-gatherers, considered as models of a healthy gut microbiome and of a homeostatic and highly adaptive gut microbiota-host relationship, respectively. In addition, we found an enrichment of short-chain fatty acids and carbohydrate degradation products in naked mole-rat compared to human samples. These data confirm the importance of the gut microbial ecosystem as an adaptive partner for the mammalian biology and health, independently of the host phylogeny.
- Published
- 2017
- Full Text
- View/download PDF
144. Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks.
- Author
-
Willensdorfer M, Cote TB, Hegna CC, Suttrop W, Zohm H, Dunne M, Strumberger E, Birkenmeier G, Denk SS, Mink F, Vanovac B, and Luhmann LC
- Abstract
Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n=2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium. This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.
- Published
- 2017
- Full Text
- View/download PDF
145. Verification and characterization of an alternative low density lipoprotein receptor-related protein 1 splice variant.
- Author
-
Kolb M, Kurz S, Schäfer A, Huse K, Dietz A, Wichmann G, and Birkenmeier G
- Subjects
- Amino Acid Sequence, Carcinoma, Squamous Cell pathology, Cell Line, Tumor, Head and Neck Neoplasms pathology, Humans, Low Density Lipoprotein Receptor-Related Protein-1 chemistry, Sequence Homology, Amino Acid, Alternative Splicing, Low Density Lipoprotein Receptor-Related Protein-1 genetics
- Abstract
Background: Low density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a ubiquitously expressed multi-ligand endocytosis receptor implicated in a wide range of signalling, among others in tumour biology. Tumour-associated genomic mutations of the LRP1 gene are described, but nothing is known about cancer-associated expression of LRP1 splice variants Therefore, the focus of this study was on an annotated truncated LRP1 splice variant (BC072015.1; NCBI GenBank), referred to as smLRP1, which was initially identified in prostate and lung carcinoma., Methods: Using PCR and quantitative PCR, the expression of LRP1 and smLRP1 in different human tissues and tumour cell lines was screened and compared on tumour biopsies of head and neck squamous cell carcinoma (HNSCC). Using a recently developed anti-smLRP1 antibody, the expression of the putative LRP1 protein isoform in tumour cell lines in Western blot and immunofluorescence staining was further investigated., Results: The alternative transcript smLRP1 is ubiquitously expressed in 12 human cell lines of different origin and 22 tissues which is similar to LRP1. A shift in expression of smLRP1 relative to LRP1 towards smLRP1 was observed in most tumour cell lines compared to healthy tissue. The expression of LRP1 as well as smLRP1 is decreased in HNSCC cell lines in comparison to healthy mucosa. In vitro results were checked using primary HNSCC. Furthermore, the expression of the protein isoform smLRP1 (32 kDa) was confirmed in human tumour cell lines., Conclusions: Similar to LRP1, the truncated splice variant smLRP1 is ubiquitously expressed in healthy human tissues, but altered in tumours pointing to a potential role of smLRP1 in cancer. Comparative results suggest a shift in expression in favour of smLRP1 in tumour cells that warrant further evaluation. The protein isoform is suggested to be secreted.
- Published
- 2017
- Full Text
- View/download PDF
146. Modulation of GLO1 Expression Affects Malignant Properties of Cells.
- Author
-
Hutschenreuther A, Bigl M, Hemdan NY, Debebe T, Gaunitz F, and Birkenmeier G
- Subjects
- Breast Neoplasms pathology, Cell Hypoxia physiology, Cell Line, Tumor, Cell Transformation, Neoplastic pathology, Female, Glutathione metabolism, HEK293 Cells, Humans, Lactoylglutathione Lyase biosynthesis, Lactoylglutathione Lyase metabolism, MCF-7 Cells, RNA Interference, RNA, Small Interfering genetics, Cell Movement genetics, Cell Proliferation genetics, Cell Transformation, Neoplastic genetics, Glycolysis genetics, Lactoylglutathione Lyase genetics, Pyruvaldehyde metabolism
- Abstract
The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed., Competing Interests: The authors declare no conflict of interest.
- Published
- 2016
- Full Text
- View/download PDF
147. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms.
- Author
-
Debebe T, Krüger M, Huse K, Kacza J, Mühlberg K, König B, and Birkenmeier G
- Abstract
The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well., Competing Interests: The antimicrobial action of EP is already patented by Gerd Birkenmeier and Klaus Huse (Patent number: PCT/EP2006/003466); however, we declare that this does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Published
- 2016
- Full Text
- View/download PDF
148. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells.
- Author
-
Birkenmeier G, Hemdan NY, Kurz S, Bigl M, Pieroh P, Debebe T, Buchold M, Thieme R, Wichmann G, and Dehghani F
- Subjects
- Adult, Female, Glycogen Synthase Kinase 3 beta antagonists & inhibitors, Glycogen Synthase Kinase 3 beta metabolism, Humans, K562 Cells, Leukemia metabolism, Leukemia pathology, Male, Neoplasm Proteins antagonists & inhibitors, Neoplasm Proteins metabolism, Adenosine Triphosphate metabolism, Free Radical Scavengers pharmacology, G1 Phase Cell Cycle Checkpoints drug effects, Leukemia drug therapy, Pyruvates pharmacology
- Abstract
Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
149. Analysis of cultivable microbiota and diet intake pattern of the long-lived naked mole-rat.
- Author
-
Debebe T, Holtze S, Morhart M, Hildebrandt TB, Rodewald S, Huse K, Platzer M, Wyohannes D, Yirga S, Lemma A, Thieme R, König B, and Birkenmeier G
- Abstract
Background: A variety of microbial communities exist throughout the human and animal body. Genetics, environmental factors and long-term dietary habit contribute to shaping the composition of the gut microbiota. For this reason the study of the gut microbiota of a mammal exhibiting an extraordinary life span is of great importance. The naked mole-rat (Heterocephalus glaber) is a eusocial mammal known for its longevity and cancer resistance., Methods: Here we analyzed its gut microbiota by cultivating the bacteria under aerobic and anaerobic conditions and identifying their species by mass spectrometry., Results: Altogether, 29 species of microbes were identified, predominantly belonging to Firmicutes, and Bacteroidetes. The most frequent species were Bacillus megaterium (45.2 %), followed by Bacteroides thetaiotaomicron (19.4 %), Bacteroides ovatus, Staphylococcus sciuri and Paenibacillus spp., each with a frequency of 16.1 %., Conclusion: Overall, the gut of the naked mole-rat is colonized by diverse, but low numbers of cultivable microbes compared with humans and mice. The primary food plants of the rodents are rich in polyphenols and related compounds, possessing anti-microbial, anti-inflammatory, anti-oxidative as well as anti-cancer activity which may contribute to their exceptionally healthy life.
- Published
- 2016
- Full Text
- View/download PDF
150. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.
- Author
-
Arredondo Parra R, Moreno Quicios R, Ploeckl B, Birkenmeier G, Herrmann A, Kocsis G, Laggner FM, Lang PT, Lunt T, Macian-Juan R, Rohde V, Sellmair G, Szepesi T, Wolfrum E, Zeidner W, and Neu R
- Abstract
Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.