101. Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines
- Author
-
Jeffrey G. Thomas and François Baneyx
- Subjects
Protein Folding ,biology ,Operon ,RuBisCO ,Mutant ,Gene Expression Regulation, Bacterial ,medicine.disease_cause ,beta-Galactosidase ,Microbiology ,GroEL ,Fusion protein ,Biochemistry ,Cytoplasm ,Mutation ,biology.protein ,medicine ,Escherichia coli ,Protein folding ,Molecular Biology ,Molecular Chaperones - Abstract
We have systematically investigated the influence of mutations in the sigma(32) heat-shock transcription factor and the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines on the folding of preS2-beta-galactosidase. This 120 kDa fusion protein between the hepatitis B surface antigen preS2 sequence and beta-galactosidase was synthesized in a highly soluble and enzymatically active form in wild-type Escherichia coli cells cultured at temperatures between 30 degrees C and 42 degrees C, but aggregated extensively in an rpoH165 (Am) mutant. Proper folding was partially restored upon co-overexpression of the dnaKJ operon, but not when the groE operon or dnaK alone were overproduced. The enzymatic activities in dnaK103, dnaJ259 and grpE280 mutants were 40-60% lower relative to a dnaK756 mutant or isogenic wild-type cells at 30 degrees C and 37 degrees C. At 42 degrees C, only 10-40% of the wild-type activity was present in each of the early-folding-factor mutants. Although the synthesis levels of preS2-beta-galactosidase were reduced in the dnaK103, dnaJ259 and grpE280 genetic backgrounds, aggregation was primarily responsible for the loss of activity when the cells were grown at 37 degrees C or 42 degrees C. By contrast, the groEL140, groES30 and groES619 mutations, which induced the aggregation of homodimeric ribulose bisphosphate carboxylase (Rubisco), did not affect the solubility of preS2-beta-galactosidase at temperatures up to 42 degrees C. Our results are discussed in terms of the current understanding of the E. coli protein-folding cascade. The potential usefulness of heat-shock protein mutants for the production of soluble proteins in an inclusion-body form is addressed.
- Published
- 1996