101. Naphthyridine derived colorimetric and fluorescent turn off sensors for Ni 2+ in aqueous media.
- Author
-
Ashraf A, Islam M, Khalid M, Davis AP, Ahsan MT, Yaqub M, Syed A, Elgorban AM, Bahkali AH, and Shafiq Z
- Abstract
Highly selective and sensitive 2,7-naphthyridine based colorimetric and fluorescence "Turn Off" chemosensors (L1-L4) for detection of Ni
2+ in aqueous media are reported. The receptors (L1-L4) showed a distinct color change from yellow to red by addition of Ni2+ with spectral changes in bands at 535-550 nm. The changes are reversible and pH independent. The detection limits for Ni2+ by (L1-L4) are in the range of 0.2-0.5 µM by UV-Visible data and 0.040-0.47 µM by fluorescence data, which is lower than the permissible value of Ni2+ (1.2 µM) in drinking water defined by EPA. The binding stoichiometries of L1-L4 for Ni2+ were found to be 2:1 through Job's plot and ESI-MS analysis. Moreover the receptors can be used to quantify Ni2+ in real water samples. Formation of test strips by the dip-stick method increases the practical applicability of the Ni2+ test for "in-the-field" measurements. DFT calculations and AIM analyses supported the experimentally determined 2:1 stoichiometries of complexation. TD-DFT calculations were performed which showed slightly decreased FMO energy gaps due to ligand-metal charge transfer (LMCT)., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF